WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Impact du déficit budgétaire sur l'inflation en RDC

( Télécharger le fichier original )
par Théodore Nielsen WITANENE MUSOMBWA
Université Libre des Pays des Grands Lacs "ULPGL" - Licencié en économie/ Gestion des entreprises 2007
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

TABLE DES MATIERES

EPIGRAPHE I

REMERCIEMENTS III

RESUME IV

SIGLES ET ABREVIATIONS V

INTRODUCTION GENERALE 1

0.1. CONTEXTE DE L'ÉTUDE 1

O.2. PROBLÉMATIQUE 2

0.3. HYPOTHÈSES 4

0.4. CHOIX ET INTÉRÊT DU SUJET 4

0.6. MÉTHODOLOGIE DU TRAVAIL 5

0.7. SUBDIVISION DU TRAVAIL 5

CHAPITRE PREMIER: CONSIDERATIONS THEORIQUES 6

I.1. NOTION SUR L'INFLATION 6

I.1.1. Définitions 6

I.1.2. Les différents types d'inflation 7

I.1.3. La monnaie, les prix et l'inflation 9

I.1.4. Approche Keynésienne face à la demande de monnaie 14

I. 2. NOTION SUR LE DÉFICIT BUDGÉTAIRE 15

I.2.1. LES DÉFICITS PUBLICS 16

I.3. LES CAUSES DE L'INFLATION 18

I.3.1. l'inflation induite par la demande 21

I.3.2. Les causes monétaires de l'inflation 23

CHAPITRE DEUXIÈME: LES DETERMINANTS DE L'INFLATION EN RDC 30

II. 1. PRÉSENTATION DES VARIABLES 30

II.1.1. Evolution de taux d'inflation en RDC 30

II.1.2. Evolution du Déficit Budgétaire en RDC 32

II.1.3. Evolution de la Masse monétaire en RDC 35

II.1.4. Le produit intérieur brut 37

II.1.5. Evolution du taux de change 41

CHAPITRE TROISIÈME: ESTIMATION EMPIRIQUE DE LA RELATION ENTRE L'INFLATION ET LE DEFICIT BUDGETAIRE 45

III.1. APPROCHE MÉTHODOLOGIQUE D'ANALYSE 45

III.2. APPROCHE ÉCONOMÉTRIQUE 46

III.2.1. Définition 46

III.2.2. Méthodologie 46

III.2.3. Etape de l'application de l'économétrie 47

III.2.4. Présentation du modèle d'étude 48

III.3. ESTIMATION DU MODÈLE D'ANALYSE 50

A. Méthode d'estimation 50

B. Test d'hypothèses classiques de modèles de régressions linéaires 51

III.3.1. Stationnarité des variables 51

A. Procédure et application du test de stationnarité 52

III.4. NOTION SUR LA CO-INTÉGRATION 56

III.4.1. ESTIMATION DU MODÈLE À LT 56

III.4.2. ESTIMATION DU MODÈLE À CORRECTION D'ERREUR À CT 60

III.5. IMPACT MACROÉCONOMIQUE DE L'AJUSTEMENT BUDGÉTAIRE 62

CONCLUSION GENERALE 69

BIBLIOGRAPHIE 73

TABLE DES MATIERES 75

ANNEXES

I. Recherche de la stationnarité des variables

- Vérification de la variable taux d'inflation

1. A niveau (modèle 3)

Null Hypothesis: LINF has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.983833

 0.5890

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LINF(-1)

-0.260013

0.131066

-1.983833

0.0565

D(LINF(-1))

0.028168

0.189743

0.148456

0.8830

C

1.383105

0.624354

2.215259

0.0345

@TREND(1970)

-0.008205

0.025055

-0.327471

0.7456

 
 
 
 
 
 
 
 
 
 

Modèle 2

Null Hypothesis: LINF has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.355318

 0.1615

Test critical values:

1% level

 

-3.639407

 
 

5% level

 

-2.951125

 
 

10% level

 

-2.614300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LINF(-1)

-0.277579

0.117852

-2.355318

0.0250

D(LINF(-1))

0.051755

0.172994

0.299174

0.7668

C

1.310180

0.574829

2.279252

0.0297

 
 
 
 
 
 
 
 
 
 

Modèle 1

Null Hypothesis: LINF has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-0.605369

 0.4477

Test critical values:

1% level

 

-2.634731

 
 

5% level

 

-1.951000

 
 

10% level

 

-1.610907

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LINF(-1)

-0.028187

0.046562

-0.605369

0.5492

D(LINF(-1))

-0.047646

0.178042

-0.267612

0.7907

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


En différence 1ère (modèle 3)

Null Hypothesis: D(LINF) has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.649999

 0.0406

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LINF(-1))

-1.048597

0.287287

-3.649999

0.0010

D(LINF(-1),2)

-0.065005

0.190508

-0.341219

0.7354

C

0.467381

0.565600

0.826346

0.4154

@TREND(1970)

-0.023293

0.026862

-0.867123

0.3930

 
 
 
 
 
 
 
 
 
 


Modèle 2

Null Hypothesis: D(LINF) has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.602888

 0.0111

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LINF(-1))

-0.954630

0.264962

-3.602888

0.0011

D(LINF(-1),2)

-0.114599

0.180967

-0.633258

0.5314

C

0.022051

0.235970

0.093447

0.9262

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modèle 1

Null Hypothesis: D(LINF) has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.660754

 0.0006

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LINF(-1))

-0.953829

0.260555

-3.660754

0.0009

D(LINF(-1),2)

-0.115129

0.177962

-0.646928

0.5224

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


La variable inflation est stationnaire en différence première avec un retard sans tendance ni constante.


- Vérification de la variable déficit budgétaire

A niveau (modèle 3)

Null Hypothesis: LDFB has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.434262

 0.8321

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LDFB(-1)

-0.167864

0.117039

-1.434262

0.1618

D(LDFB(-1))

-0.034833

0.188654

-0.184640

0.8548

C

4.446362

2.849062

1.560641

0.1291

@TREND(1970)

-0.103451

0.055508

-1.863710

0.0722

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Modèle 2

Null Hypothesis: LDFB has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-0.377322

 0.9021

Test critical values:

1% level

 

-3.639407

 
 

5% level

 

-2.951125

 
 

10% level

 

-2.614300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LDFB(-1)

-0.036659

0.097157

-0.377322

0.7085

D(LDFB(-1))

-0.055434

0.195699

-0.283261

0.7789

C

0.221410

1.793227

0.123470

0.9025

 
 
 
 
 

Durbin-Watson stat

1.998045

    Prob(F-statistic)

0.830226

 
 
 
 
 
 
 
 
 
 


Modèle 1

Null Hypothesis: LDFB has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.050762

 0.2588

Test critical values:

1% level

 

-2.634731

 
 

5% level

 

-1.951000

 
 

10% level

 

-1.610907

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LDFB(-1)

-0.025042

0.023832

-1.050762

0.3012

D(LDFB(-1))

-0.065928

0.173546

-0.379887

0.7065

 
 
 
 
 


En différence 1ère (modèle 3)

Null Hypothesis: D(LDFB) has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.177125

 0.0123

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LDFB(-1))

-1.180660

0.282649

-4.177125

0.0002

D(LDFB(-1),2)

0.041309

0.187434

0.220390

0.8271

C

0.654341

1.030410

0.635030

0.5304

@TREND(1970)

-0.060213

0.050361

-1.195623

0.2415

 
 
 
 
 
 
 
 
 
 


Modèle 2

Null Hypothesis: D(LDFB) has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.978315

 0.0043

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LDFB(-1))

-1.069690

0.268880

-3.978315

0.0004

D(LDFB(-1),2)

-0.017003

0.182269

-0.093287

0.9263

C

-0.444657

0.468987

-0.948123

0.3506

 
 
 
 
 
 
 
 
 
 


Modèle 1

Null Hypothesis: D(LDFB) has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.870062

 0.0003

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LDFB(-1))

-1.010326

0.261062

-3.870062

0.0005

D(LDFB(-1),2)

-0.046327

0.179332

-0.258331

0.7979

 
 
 
 
 


Le déficit budgétaire est stationnaire en différence 1ère avec un retard sans tendance ni constante

- Vérification de la variable masse monétaire

A niveau (modèle 3)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.586993

 0.7772

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LMM(-1)

-0.260528

0.164164

-1.586993

0.1230

D(LMM(-1))

-0.264415

0.182331

-1.450191

0.1574

C

2.008562

1.012706

1.983362

0.0565

@TREND(1970)

0.088215

0.066299

1.330563

0.1934

 
 
 
 
 
 
 
 
 
 


Modèle 2

Null Hypothesis: LMM has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-0.973322

 0.7515

Test critical values:

1% level

 

-3.639407

 
 

5% level

 

-2.951125

 
 

10% level

 

-2.614300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LMM(-1)

-0.055217

0.056730

-0.973322

0.3379

D(LMM(-1))

-0.372864

0.165113

-2.258234

0.0311

C

1.082411

0.744662

1.453561

0.1561

 
 
 
 
 
 
 
 
 
 


Modèle 1

Null Hypothesis: LMM has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

 1.304296

 0.9484

Test critical values:

1% level

 

-2.634731

 
 

5% level

 

-1.951000

 
 

10% level

 

-1.610907

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LMM(-1)

0.023222

0.017804

1.304296

0.2014

D(LMM(-1))

-0.392014

0.167424

-2.341440

0.0256

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


En différence 1ère (Modèle 3)

Null Hypothesis: D(LMM) has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.793227

 0.2095

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LMM(-1))

-0.932512

0.333847

-2.793227

0.0091

D(LMM(-1),2)

-0.326884

0.203106

-1.609420

0.1184

C

0.540627

0.517574

1.044541

0.3049

@TREND(1970)

-0.016337

0.024091

-0.678139

0.5031

 
 
 
 
 


Modèle 2

Null Hypothesis: D(LMM) has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.866819

 0.0602

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LMM(-1))

-0.946590

0.330188

-2.866819

0.0075

D(LMM(-1),2)

-0.314150

0.200408

-1.567554

0.1275

C

0.235577

0.253677

0.928651

0.3605

 
 
 
 
 
 
 
 
 
 


Modèle 1

Null Hypothesis: D(LMM) has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.749119

 0.0075

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LMM(-1))

-0.808162

0.293971

-2.749119

0.0099

D(LMM(-1),2)

-0.390534

0.182344

-2.141740

0.0402

 
 
 
 
 
 
 
 
 
 


La masse monétaire est stationnaire en différence 1ère avec un retard sans tendance ni constante

- Vérification de la variable PIB

A niveau (modèle3)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.028793

 0.5652

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LPIB(-1)

-0.077073

0.037990

-2.028793

0.0514

D(LPIB(-1))

0.583907

0.143547

4.067723

0.0003

C

-0.870035

0.626415

-1.388912

0.1751

@TREND(1970)

0.102017

0.048244

2.114619

0.0429

 
 
 
 
 
 
 
 
 
 


En différence première

Modèle 3

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.670420

 0.7417

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1))

-0.291739

0.174650

-1.670420

0.1056

D(LPIB(-1),2)

-0.244087

0.187700

-1.300410

0.2037

C

0.260886

0.376777

0.692414

0.4942

@TREND(1970)

0.001978

0.019931

0.099235

0.9216

 
 
 
 
 
 
 
 
 
 

Modèle 2

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.856887

 0.3477

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1))

-0.283837

0.152857

-1.856887

0.0732

D(LPIB(-1),2)

-0.249558

0.176433

-1.414462

0.1675

C

0.290494

0.226262

1.283880

0.2090

 
 
 
 
 
 
 
 
 
 


Modèle 1.

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.327927

 0.1668

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1))

-0.150022

0.112974

-1.327927

0.1939

D(LPIB(-1),2)

-0.315961

0.170437

-1.853829

0.0733

 
 
 
 
 
 
 
 
 
 

En deuxième différence (modèle 3)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.568501

 0.0049

Test critical values:

1% level

 

-4.273277

 
 

5% level

 

-3.557759

 
 

10% level

 

-3.212361

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1),2)

-1.446271

0.316575

-4.568501

0.0001

D(LPIB(-1),3)

0.031720

0.189012

0.167823

0.8679

C

0.276889

0.430159

0.643690

0.5250

@TREND(1970)

-0.014188

0.019981

-0.710065

0.4835

 
 
 
 
 
 
 
 
 
 

Modèle 2

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.552230

 0.0010

Test critical values:

1% level

 

-3.653730

 
 

5% level

 

-2.957110

 
 

10% level

 

-2.617434

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1),2)

-1.409457

0.309619

-4.552230

0.0001

D(LPIB(-1),3)

0.013354

0.185626

0.071940

0.9431

C

0.000135

0.180439

0.000747

0.9994

 
 
 
 
 
 
 
 
 
 


Modèle 1

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.630085

 0.0000

Test critical values:

1% level

 

-2.639210

 
 

5% level

 

-1.951687

 
 

10% level

 

-1.610579

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB(-1),2)

-1.409456

0.304412

-4.630085

0.0001

D(LPIB(-1),3)

0.013354

0.182506

0.073168

0.9422

 
 
 
 
 


Explication : Le PIB devient stationnaire en deuxième différence avec un retard sans tendance ni constante

- Vérification du Taux de change

A niveau (modèle 3)

Null Hypothesis: LTC has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.496153

 0.8113

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LTC(-1)

-0.189047

0.126355

-1.496153

0.1451

D(LTC(-1))

0.040997

0.192696

0.212752

0.8330

C

-0.246742

0.480222

-0.513807

0.6112

@TREND(1970)

0.034242

0.024570

1.393667

0.1737

 
 
 
 
 
 
 
 
 
 

Modèle 2

Null Hypothesis: LTC has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-1.077309

 0.7133

Test critical values:

1% level

 

-3.639407

 
 

5% level

 

-2.951125

 
 

10% level

 

-2.614300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LTC(-1)

-0.130246

0.120900

-1.077309

0.2897

D(LTC(-1))

0.042903

0.195598

0.219345

0.8278

C

0.314337

0.265738

1.182885

0.2458

 
 
 
 
 


Modèle 1

Null Hypothesis: LTC has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-0.551512

 0.4708

Test critical values:

1% level

 

-2.634731

 
 

5% level

 

-1.951000

 
 

10% level

 

-1.610907

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LTC(-1)

-0.057864

0.104919

-0.551512

0.5851

D(LTC(-1))

0.014218

0.195295

0.072802

0.9424

 
 
 
 
 


En différence 1ère (modèle 3)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.458156

 0.0062

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LTC(-1))

-1.212889

0.272061

-4.458156

0.0001

D(LTC(-1),2)

0.125316

0.185167

0.676773

0.5039

C

-0.300052

0.536623

-0.559148

0.5804

@TREND(1970)

0.026417

0.025815

1.023319

0.3146

 
 
 
 
 


Modèle 2

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.337037

 0.0017

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LTC(-1))

-1.142505

0.263430

-4.337037

0.0002

D(LTC(-1),2)

0.088865

0.181851

0.488670

0.6286

C

0.190174

0.241998

0.785849

0.4381

 
 
 
 
 
 
 
 
 
 

Modèle 1

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.291802

 0.0001

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LTC(-1))

-1.105039

0.257477

-4.291802

0.0002

D(LTC(-1),2)

0.070115

0.179164

0.391346

0.6982

 
 
 
 
 


Explication : Le taux de change est stationnaire en différence 1ère avec un retard sans tendance ni constante

Vérification de la stationnarité de résidu

A niveau modèle 3

Null Hypothesis: RES has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.867407

 0.1850

Test critical values:

1% level

 

-4.252879

 
 

5% level

 

-3.548490

 
 

10% level

 

-3.207094

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

RES(-1)

-0.446572

0.155741

-2.867407

0.0075

D(RES(-1))

0.101143

0.180587

0.560082

0.5796

C

0.199855

0.484249

0.412711

0.6828

@TREND(1970)

-0.007126

0.023336

-0.305366

0.7622

 
 
 
 
 
 
 
 
 
 

Modèle 2

Null Hypothesis: RES has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.039671

 0.0412

Test critical values:

1% level

 

-3.639407

 
 

5% level

 

-2.951125

 
 

10% level

 

-2.614300

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

RES(-1)

-0.456387

0.150143

-3.039671

0.0048

D(RES(-1))

0.115370

0.171903

0.671133

0.5071

C

0.068127

0.216784

0.314263

0.7554

 
 
 
 
 
 
 
 
 
 

Modèle 1

Null Hypothesis: RES has a unit root

 

Exogenous: None

 
 

Lag Length: 1 (Fixed)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.075090

 0.0031

Test critical values:

1% level

 

-2.634731

 
 

5% level

 

-1.951000

 
 

10% level

 

-1.610907

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

RES(-1)

-0.454943

0.147945

-3.075090

0.0043

D(RES(-1))

0.115926

0.169456

0.684108

0.4988

 
 
 
 
 
 
 
 
 
 

R-squared

0.233608

    Mean dependent var

0.044892

Adjusted R-squared

0.209658

    S.D. dependent var

1.400628

S.E. of regression

1.245175

    Akaike info criterion

3.333451

Sum squared resid

49.61471

    Schwarz criterion

3.423237

Log likelihood

-54.66867

    Durbin-Watson stat

2.106007

 
 
 
 
 
 
 
 
 
 


Le terme d'erreur est stationnaire à niveau sans tendance ni constante avec un retard

Modèle à correction d'erreur

Le modèle à correction d'erreur à LT linf1 ldfb1 lpibv1

Dependent Variable: LINF1

 
 

Method: Least Squares

 
 

Date: 03/12/08 Time: 17:03

 
 

Sample (adjusted): 1971 2005

 
 

Included observations: 35 after adjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

LDFB1

0.196176

0.034283

5.722264

0.0000

LPIBV1

0.082396

0.031754

2.594830

0.0140

 
 
 
 
 
 
 
 
 
 

R-squared

0.009729

    Mean dependent var

1.773796

Adjusted R-squared

-0.020279

    S.D. dependent var

1.216960

S.E. of regression

1.229238

    Akaike info criterion

3.306111

Sum squared resid

49.86383

    Schwarz criterion

3.394988

Log likelihood

-55.85694

    Durbin-Watson stat

1.888629

 
 
 
 
 
 
 
 
 
 

Le modèle à CT

Linf1=C+d(ldfb,1)+d(ldfb,(-1),1)+d(lpib,2)+d(lpib(-1),2)+d(linf(-1),1)+res(-1)

Dependent Variable: D(LINF,1)

 

Method: Least Squares

 
 

Date: 03/12/08 Time: 12:41

 
 

Sample (adjusted): 1973 2005

 
 

Included observations: 33 after adjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

C

0.104674

0.164448

0.636516

0.5300

D(LDFB,1)

0.068457

0.068682

0.996729

0.3281

D(LDFB(-1),1)

0.008329

0.068145

0.122227

0.9037

D(LPIB,2)

1.121372

0.240880

4.655306

0.0001

D(LPIB(-1),2)

0.593423

0.317619

1.868352

0.0730

D(LINF(-1),1)

-0.416173

0.227404

-1.830107

0.0787

RES(-1)

-0.335244

0.125692

-2.667187

0.0130

 
 
 
 
 
 
 
 
 
 

R-squared

0.613566

    Mean dependent var

0.025352

Adjusted R-squared

0.524389

    S.D. dependent var

1.324347

S.E. of regression

0.913329

    Akaike info criterion

2.842391

Sum squared resid

21.68843

    Schwarz criterion

3.159832

Log likelihood

-39.89945

    F-statistic

6.880321

Durbin-Watson stat

2.180885

    Prob(F-statistic)

0.000185

 
 
 
 
 
 
 
 
 
 


On enlève d'abord le déficit budgétaire avec un retard  et l'équation devient :

Linf1=C+d(ldfb,1)+d(lpib,2)+d(lpib(-1),2)+d(linf(-1),1)+res(-1)

 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

C

0.101808

0.159771

0.637211

0.5294

D(LDFB,1)

0.068249

0.067397

1.012646

0.3202

D(LPIB,2)

1.125236

0.234400

4.800501

0.0001

D(LPIB(-1),2)

0.596919

0.310504

1.922417

0.0652

D(LINF(-1),1)

-0.416225

0.223217

-1.864667

0.0731

RES(-1)

-0.340242

0.116666

-2.916361

0.0070

 
 
 
 
 
 
 
 
 
 

R-squared

0.613344

    Mean dependent var

0.025352

Adjusted R-squared

0.541741

    S.D. dependent var

1.324347

S.E. of regression

0.896514

    Akaike info criterion

2.782359

Sum squared resid

21.70090

    Schwarz criterion

3.054452

Log likelihood

-39.90893

    F-statistic

8.565914

Durbin-Watson stat

2.173124

    Prob(F-statistic)

0.000059

 
 
 
 
 
 
 
 
 
 


Nous enlevons maintenant la C: Linf1=d(ldfb,1)+d(lpib,2)+d(lpib(-1),2)+d(linf(-1),1)+res(-1)

 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LDFB,1)

0.059989

0.065433

0.916796

0.3671

D(LPIB,2)

1.116534

0.231506

4.822909

0.0000

D(LPIB(-1),2)

0.578286

0.305828

1.890884

0.0690

D(LINF(-1),1)

-0.410550

0.220661

-1.860549

0.0733

RES(-1)

-0.331251

0.114575

-2.891123

0.0073

 
 
 
 
 
 
 
 
 
 

R-squared

0.607530

    Mean dependent var

0.025352

Adjusted R-squared

0.551462

    S.D. dependent var

1.324347

S.E. of regression

0.886954

    Akaike info criterion

2.736680

Sum squared resid

22.02724

    Schwarz criterion

2.963423

Log likelihood

-40.15522

    Durbin-Watson stat

2.146056

 
 
 
 
 
 
 
 
 
 


Nous enlèvons maintenant la d(ldfb,1): Linf1=d(ldfb,1)+d(lpib,2)+d(lpib(-1),2)+d(linf(-1),1)+res(-1)

Dependent Variable: D(LINF,1)

 

Method: Least Squares

 
 

Date: 03/12/08 Time: 12:44

 
 

Sample (adjusted): 1973 2005

 
 

Included observations: 33 after adjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB,2)

1.061878

0.223083

4.760019

0.0000

D(LPIB(-1),2)

0.483249

0.286932

1.684195

0.1029

D(LINF(-1),1)

-0.375117

0.216651

-1.731432

0.0940

RES(-1)

-0.317104

0.113219

-2.800808

0.0090

 
 
 
 
 
 
 
 
 
 

R-squared

0.595748

    Mean dependent var

0.025352

Adjusted R-squared

0.553929

    S.D. dependent var

1.324347

S.E. of regression

0.884512

    Akaike info criterion

2.705650

Sum squared resid

22.68847

    Schwarz criterion

2.887045

Log likelihood

-40.64323

    Durbin-Watson stat

2.126368

 
 
 
 
 
 
 
 
 
 


Puis maintenant suivit de D(LPIB(-1),2)

 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(LPIB,2)

0.787873

0.157333

5.007692

0.0000

D(LINF(-1),1)

-0.080020

0.133645

-0.598752

0.5537

RES(-1)

-0.296963

0.106715

-2.782762

0.0091

 
 
 
 
 
 
 
 
 
 

R-squared

0.560293

    Mean dependent var

0.050480

Adjusted R-squared

0.531925

    S.D. dependent var

1.312332

S.E. of regression

0.897845

    Akaike info criterion

2.706460

Sum squared resid

24.98992

    Schwarz criterion

2.841138

Log likelihood

-43.00981

    Durbin-Watson stat

2.116502

 
 
 
 
 
 
 
 
 
 

En fin nous avons le modèle final avec une force de rappel négatif situant entre -1 et 0 c'est-à-dire de ñ=-0,32

 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.

 
 
 
 
 
 
 
 
 
 

D(LPIB,2)

0.761034

0.149293

5.097593

0.0000

RES(-1)

-0.321895

0.097266

-3.309451

0.0023

 
 
 
 
 
 
 
 
 
 

R-squared

0.555208

Mean dependent var

0.050480

Adjusted R-squared

0.541308

S.D. dependent var

1.312332

S.E. of regression

0.888800

Akaike info criterion

2.659134

Sum squared resid

25.27892

Schwarz criterion

2.748920

Log likelihood

-43.20528

Durbin-Watson stat

2.304354

 
 
 
 
 
 
 
 
 
 


Les évolutions de différentes variables

Années

Taux d'inflation

Déficit budgétaire en $

Masse monétaire en $

Taux de change

PIB en $

1970

1,7

2,74

1187

1,6701

7222373858

1971

3,9

10,8

1320

1,6701

7656078713

1972

9,4

54

1556

1,6701

7667649767

1973

24,5

152

1907

1,6701

8291587582

1974

43

420

2524

1,6701

8551162852

1975

45,4

320

3260

1,6701

8125175472

1976

71,2

593,43

4541

2,641

7693809737

1977

63,1

372,53

8618

2,8551

7752343750

1978

67,1

681,82

12695

2,7871

7337958376

1979

99

323,89

8986

5,7611

7369518074

1980

36,8

121,43

24415

9,331

7531272578

1981

40,9

388,13

33179

1,4608

7708296953

1982

35,3

574,91

52108

1,9162

7673017804

1983

100,8

201,71

97398

4,2955

7781338080

1984

33,7

99,64

139718

1,2041

8212507782

1985

26,5

38,08

170524

1,6621

8250930078

1986

32,8

177,52

112534

1,9871

8640143748

1987

99,5

233,1

121627

3,7459

8871323102

1988

121,5

62

130720

6,2343

8913052150

1989

95,8

89,46

139813

1,2712

8800208397

1990

264,9

712,5

148905

2,3947

8222183368

1991

4228,5

1458,27

157998

5,1946

7529789072

1992

2989,6

1089,73

167091

2,1514

6739160575

1993

4651,7

1546,33

14711

2,5144

5831459631

1994

9796,9

127,31

857742

0,0119

5604032892

1995

370,3

67,61

4388893

0,0702

5643261056

1996

572,9

70,63

24388738

0,5018

5585520626

1997

13,7

43,66

49630440

1,3134

5271779429

1998

134,8

174,29

141812038

1,6067

5186157447

1999

483,7

642,53

769406423

4,0183

4958038232

2000

511,2

239,72

75894258

21,8183

257869502300

2001

135,1

241,21

587111212

206,6201

365396422000

2002

15,8

276,03

35987987

346,4903

252896400000

2003

6,3

351,25

445789541

405,3401

328000000000

2004

7,07

378,16

25897369

401,0402

998629900000

2005

21,7

362,26

15857935

406,0901

518240200000

Source : Rapport du FMI et Banque Mondiale

REPUBLIQUE DEMOCRATIQUE DU CONGO

UNIVERSITE LIBRE DES PAYS DES GRANDS LACS

ULPGL-GOMA

B.P. 368 GOMA

FACULTE DES SCIENCES ECONOMIQUES ET DE GESTION

IMPACT DE DEFICIT BUDGETAIRE SUR L'INFLATION EN REPUBLIQUE DEMOCRATIQUE DU CONGO.

De 1970-2005 

Par :

Nielsen WITANENE MUSOMBWA

Mémoire présenté et défendu en vue de l'obtention de titre de licence en Sciences économiques et de Gestion

Option : Gestion des entreprises

Directeur : Prof. Gaston KIMBUANI MABELA.

Encadreur : CT. Jean-Pierre KISONIA MUSUBAO

Avril 2008

Nielsen WITANENE MUSOMBWA

ULPGL / GOMA

Gestion des entreprises

Année académique 2006-2007

précédent sommaire










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Enrichissons-nous de nos différences mutuelles "   Paul Valery