WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Infinite dilution activity coefficient measurements of organic solutes in fluorinated ionic liquids by gas-liquid chromatography and the inert gas stripping method

( Télécharger le fichier original )
par Kaniki TUMBA
University of Kwazalu-Natal - Master 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

CHAPTER FIVE: RESULTS

Chapter overview

Results presented in this work consist of the following:

· Infinite dilution activity coefficients data for various organic solutes in n-hexadecane and seven different FILs, obtained from Gas-Liquid Chromatography;

· Excess molar enthalpies at infinite dilution of the same solutes in the fluorinated ionic liquids, calculated from experimental infinite dilution activity coefficients data;

· Correlation of experimental infinite dilution activity coefficient data with temperature and the carbon chain length of solutes;

· Infinite dilution activity coefficients data for six organic solutes in NMP and one fluorinated ionic liquid;

· Limiting selectivities and capacities of the seven investigated fluorinated ionic liquids for selected separation problems;

· Estimation of experimental errors in determining activity coefficients, Excess molar enthalpies, selectivities and capacities at infinite dilution.

Equations (3-10) and (3-90) were used to calculate IDACs from experimental parameters obtained by the GC method and the IGST respectively. Excess molar enthalpies at infinite dilution were determined using equation (2-11). Some experimental data obtained in this study have been published as part of collaborative work with Prof. Nirmala Deenadayalu ([C13C8] [Tf2N]) and Mr. Eugene Olivier ([EMIM] [TfO], [BMIM] [SbF6] and [MOIM] [PF6]). These results are also included in this chapter.

5.1. Results from Gas-Liquid Chromatography

5.1.1. Hexadecane

Table 5-1: Infinite dilution activity coefficients of selected organic solutes in n-hexadecane.

Solutes

T /K

 
 

R.D#./ %

n-pentane n-pentane n-hexane n-hexane n-hexane n-heptane n-heptane

323.15 333.15 303.15 313.15 323.15 303.15

? )

1

323.15

lit

0.839 0.870 0.882 0.892 0.896 0.882 0.890

0.814a
0.833 a
0.880-0.904bc
0.870-0.910 b
0.860-0.905 a bd
0.916-0.927 b
0.867-0.921 ad

3.1 4.4 1.8 1.4 0.6 4.3 0.4

Hex-1-ene

323.15

0.862

0.855 a

0.8

Hept-1-ene

323.15

0.866

0.902 a

4.0

Cyclopentane

323.15

0.695

0.686 a

1.3

Cyclohexane

303.15

0.775

0.795 b

2.5

Cyclohexane

313.15

0.776

0.778 b

0.3

Cyclohexane

323.15

0.736

0.739-0.787 ad

3.5

Benzene

303.15

1.071

1.105-1.110 be

3.3

Benzene

313.15

1.010

1.006-1.051 b

0.4

Benzene

323.15

0.953

0.932-0.995 ad

2.1

Toluene

323.15

0.953

0.941 a

1.3

Dichloromethane

303.15

1.428

1.440b

0.8

 

a Schult et al. (2001); bChien et al (1981) c Cruickshank et al. (1966b); d Castells et al. (1990);
e Gainey and Young (1968)

# Relative deviation, R.D., given by

5.1.2. Trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide,

[3C6C14P] [Tf2N]

Table 5-2: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide with solvent column loading

n3 = 1.577 mmol (29.5 %) at T = (313.15, 333.15,

353.15 and 373.15) K.

 

Experimental

at /K

 
 

Solute

n3/ mmol

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane

1.577

0.970

0.976

0.988

0.990

n-hexane

1.577

1.101

1.119

1.126

1.130

n-heptane

1.577

1.163

1.249

1.315

1.434

n-octane

1.577

1.405

1.443

1.459

1.495

n-nonane

1.577

1.607

1.681

1.769

1.871

Pent-1-ene

1.577

0.810

0.833

0.841

0.862

Hex-1-ene

1.577

0.909

0.932

0.941

0.943

Hept-1-ene

1.577

1.030

1.064

1.102

1.123

Oct-1-ene

1.577

1.163

1.384

1.610

1.905

Pent-1-yne

1.577

0.611

0.640

0.662

0.701

Hex-1-yne

1.577

0.691

0.707

0.718

0.730

Hept-1-yne

1.577

0.730

0.747

0.764

0.780

Oct-1-yne

1.577

0.841

0.872

0.890

0.899

Nony-1-ne

1.577

0.850

0.912

0.954

0.977

Cyclopentane

1.577

0.686

0.696

0.714

0.723

Cyclohexane

1.577

0.797

0.800

0.802

0.805

Cycloheptane

1.577

0.865

0.882

0.895

0.910

Cyclooctane

1.577

0.965

1.000

1.065

1.119

Methanol

1.577

1.077

1.025

0.921

0.865

Ethanol

1.577

1.270

1.096

0.953

0.880

Propan-1-ol

1.577

1.279

1.155

1.070

0.954

Butan-1-ol

1.577

1.425

1.194

1.090

0.949

Benzene

1.577

0.390

0.403

0.414

0.432

Toluene

1.577

0.450

0.471

0.485

0.512

Acetone

1.577

0.299

0.318

0.328

0.332

Butan-2-one

1.577

0.317

0.329

0.331

0.333

 

Table 5-3: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide with solvent column loading

n3 =2.236 mmol (31.7 %) at T = (313.15, 333.15,

353.15 and 373.15) K.

 

Experimental

at /K

 
 

Solute

n3/ mmol

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane

2.236

0.950

0.980

0.992

1.014

n-hexane

2.236

1.091

1.103

1.122

1.130

n-heptane

2.236

1.139

1.257

1.309

1.412

n-octane

2.236

1.403

1.439

1.463

1.491

n-nonane

2.236

1.593

1.659

1.777

1.867

Pent-1-ene

2.236

0.802

0.815

0.843

0.838

Hex-1-ene

2.236

0.905

0.910

0.919

0.941

Hept-1-ene

2.236

1.034

1.066

1.100

1.121

Oct-1-ene

2.236

1.159

1.382

1.606

1.901

Pent-1-yne

2.236

0.615

0.632

0.664

0.697

Hex-1-yne

2.236

0.695

0.711

0.722

0.734

Hept-1-yne

2.236

0.722

0.751

0.760

0.784

Oct-1-yne

2.236

0.831

0.858

0.882

0.899

Nony-1-ne

2.236

0.856

0.918

0.958

0.981

Cyclopentane

2.236

0.688

0.700

0.712

0.719

Cyclohexane

2.236

0.793

0.794

0.794

0.795

Cycloheptane

2.236

0.875

0.880

0.887

0.900

Cyclooctane

2.236

0.961

0.996

1.073

1.121

Methanol

2.236

1.089

1.027

0.923

0.861

Ethanol

2.236

1.268

1.094

0.949

0.884

Propan-1-ol

2.236

1.281

1.149

1.074

0.952

Butan-1-ol

2.236

1.421

1.188

1.080

0.959

Benzene

2.236

0.392

0.407

0.420

0.442

Toluene

2.236

0.454

0.473

0.487

0.508

Acetone

2.236

0.295

0.300

0.320

0.330

Butan-2-one

2.236

0.325

0.326

0.333

0.335

 

Table 5-4: Average activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide at T = (313.15, 333.15,
353.15 and 373.15) K.

Experimental at /K

Solute

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane

0.960

0.978

0.990

1.002

n-hexane

1.096

1.111

1.124

1.130

n-heptane

1.151

1.253

1.312

1.423

n-octane

1.404

1.441

1.461

1.493

n-nonane

1.600

1.670

1.773

1.869

Pent-1-ene

0.806

0.824

0.842

0.850

Hex-1-ene

0.907

0.921

0.930

0.942

Hept-1-ene

1.032

1.065

1.101

1.122

Oct-1-ene

1.161

1.383

1.608

1.903

Pent-1-yne

0.613

0.636

0.663

0.699

Hex-1-yne

0.693

0.709

0.720

0.732

Hept-1-yne

0.726

0.749

0.762

0.782

Oct-1-yne

0.836

0.865

0.886

0.899

Non-1-yne

0.853

0.915

0.956

0.979

Cyclopentane

0.687

0.698

0.713

0.721

Cyclohexane

0.795

0.797

0.798

0.800

Cycloheptane

0.870

0.881

0.891

0.905

Cyclooctane

0.963

0.998

1.069

1.120

Methanol

1.083

1.026

0.922

0.863

Ethanol

1.269

1.095

0.951

0.882

Propan-1-ol

1.280

1.152

1.072

0.953

Butan-1-ol

1.423

1.191

1.085

0.954

Benzene

0.391

0.405

0.417

0.437

Toluene

0.452

0.472

0.486

0.510

Acetone

0.297

0.327

0.332

0.334

Butan-2-one

0.321

0.328

0.324

0.331

 

Table 5-5: Partial molar excess enthalpies at infinite dilution for organic solutes in the

ionic liquid trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide, calculated from
the Gibbs-Helmholtz equation.

SOLUTE

Linear regression using Eq.(2-11)

 
 
 
 

n-pentane

-0.083

0.223

0.995

-0.69

n-hexane

-0.061

0.286

0.982

-0.51

n-heptane

-0.398

1.413

0.987

-3.31

n-octane

-0.116

0.710

0.990

-0.96

n-nonane

-0.306

1.440

0.988

-2.54

Pent-1-ene

-0.107

0.126

0.985

-0.89

Hex-1-ene

-0.072

0.132

0.995

-0.60

Hept-1-ene

-0.166

0.563

0.994

-1.38

Oct-1-ene

-0.953

3.186

0.997

-7.92

Pent-1-yne

-0.253

0.312

0.981

-2.10

Hex-1-yne

-0.105

-0.029

0.997

-0.87

Hept-1-yne

-0.140

0.129

0.991

-1.17

Oct-1-yne

-0.142

0.278

0.984

-1.18

Nony-1-ne

-0.270

0.710

0.970

-2.24

Cyclopentane

-0.097

-0.065

0.990

-0.81

Cyclohexane

-0.011

-0.192

0.982

-0.10

Cycloheptane

-0.075

0.100

0.987

-0.63

Cyclooctane

-0.303

0.923

0.978

-2.52

Methanol

0.459

-1.372

0.978

3.81

Ethanol

0.723

-2.078

0.991

6.02

Propan-1-ol

0.557

-1.528

0.987

4.63

Butan-1-ol

0.757

-2.075

0.990

6.30

Benzene

-0.211

-0.269

0.980

-1.75

Toluene

-0.228

-0.067

0.986

-1.90

Acetone

-0.079

-0.880

0.994

-0.66

Butan-2-one

-0.218

-0.514

0.998

-1.81

 

0.8

0.6

ln(1113)

0.4

0.2

0

-0.2

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-1: Plots of versus for alkanes in [3C6C14P] [Tf2N] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; () n-pentane,
() n-hexane, (?) n-heptane and (?) n-octane, () n-nonane.

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

ln(1313)

-0.2

-0.4

0.8

0.6

0.4

0.2

0.0

Figure 5-2: Plots of versus for alk-1-enes in [3C6C14P] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-ene, () hex-1-ene,
(?) hept-1-ene and (?) oct-1-ene.

ln(1313)

-0.1

-0.2

-0.3

-0.4

-0.5

0.2

0.1

0

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-3: Plots of versus for cycloalkanes in [3C6C14P] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () cyclopentane, () cyclohexane,
(?) cycloheptane and (?) Cyclooctane.

0.0

-0.1

-0.2

ln( LP 13)

-0.3

-0.4

-0.5

-0.6

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-4: Plots of versus for alk-1-ynes in [3C6C14P] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; ()pent-1-yne, () hex-1-yne,
(?) hept-1-yne, (?) oct-1-yne and () n-nonyne.

lii( LP 13)

0.4 0.3 0.2 0.1

0 -0.1 -0.2

 
 

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-5: Plots of versus for alkanols in [3C6C14P] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () methanol, () ethanol,
(?) propan-1-ol and (?) butan-1-ol.

ln( LP13)

-0.5 -0.6 -0.7 -0.8 -0.9

-1

 
 

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-6: Plots of versus for alkylbenzenes in [3C6C14P] [Tf2N] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; () benzene and () toluene.

1n(L13)

-1.08 -1.12 -1.16 -1.20 -1.24

 
 

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-7: Plots of versus for ketones in [3C6C14P] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () acetone and () butan-2-one.

In(m13)

1
0.5
0
-0.5
-1
-1.5

 
 

0 1 2 3 4 5 6 7 8 9 10

Number of Carbon atoms, Nc

Figure 5-8: Plots of versus the carbon number of the solute at 313.15 K for () n-alkanes,

() alk-1-enes, (?) cycloalkanes, (?) alk-1-ynes () ketones, (?) alkanols and (?)
alkylbenzenes in [3C6C14P] [Tf2N].

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Je voudrais vivre pour étudier, non pas étudier pour vivre"   Francis Bacon