WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Infinite dilution activity coefficient measurements of organic solutes in fluorinated ionic liquids by gas-liquid chromatography and the inert gas stripping method

( Télécharger le fichier original )
par Kaniki TUMBA
University of Kwazalu-Natal - Master 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

5.1.3. Trihexyltetradecylphosphonium tetrafluoroborate, [3C6C14P] [BF4]

Table 5-6: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium tetrafluoroborate with solvent column loading

n3 = 2.395 mmol (25.09 %) at T = (313.15, 333.15,

353.15 and 373.15) K.

 
 

Experimental

at /K

 
 

Solute

n3/ mmol

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane.

2.395

1.231

1.211

1.208

1.199

n-hexane

2.395

1.392

1.368

1.362

1.353

n-heptane

2.395

1.579

1.538

1.525

1.516

n-octane

2.395

1.792

1.769

1.711

1.697

n-nonane

2.395

2.053

1.965

1.936

1.912

n-decane

2.395

2.400

2.236

2.184

2.125

Pent-1-ene

2.395

0.971

0.984

0.992

1.017

Hex-1-ene

2.395

1.117

1.120

1.125

1.131

Hept-1-ene

2.395

1.247

1.250

1.254

1.262

Oct-1-ene

2.395

1.403

1.412

1.413

1.419

Non-1-ene

2.395

1.630

1.589

1.568

1.596

Pent-1-yne

2.395

0.569

0.591

0.624

0.690

Hex-1-yne

2.395

0.610

0.646

0.682

0.705

Hept-1-yne

2.395

0.670

0.697

0.749

0.820

Octy-1-ne

2.395

0.760

0.818

0.870

0.923

Non-1-yne

2.395

0.784

0.871

0.950

1.025

Cyclopentane

2.395

0.841

0.816

0.813

0.802

Cyclohexane

2.395

0.970

0.935

0.919

0.905

Cycloheptane

2.395

1.047

1.007

0.982

0.965

Cyclooctane

2.395

1.112

1.088

1.073

1.063

Methanol

2.395

0.548

0.500

0.466

0.453

Ethanol

2.395

0.611

0.553

0.507

0.479

Benzene

2.395

0.432

0.440

0.447

0.464

Toluene

2.395

0.524

0.539

0.546

0.564

Ethylbenzene

2.395

0.659

0.665

0.682

0.696

Acetone

2.395

0.436

0.437

0.438

0.439

Butan-2-one

2.395

0.450

0.452

0.455

0.457

 

Table 5-7: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium tetrafluoroborate with solvent column loading

n3 = 2.236 mmol (30.97 %) at T = (313.15, 333.15,

353.15 and 373.15) K.

 
 

Experimental

at /K

 
 

Solute

n3/ mmol

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane

2.694

1.285

1.269

1.230

1.193

n-hexane

2.694

1.408

1.400

1.358

1.311

n-heptane

2.694

1.577

1.590

1.527

1.458

n-octane

2.694

1.788

1.729

1.701

1.623

n-nonane

2.694

2.069

1.991

1.912

1.812

n-decane

2.694

2.360

2.290

2.172

2.069

Pent-1-ene

2.694

1.017

0.990

0.958

0.929

Hex-1-ene

2.694

1.101

1.090

1.083

1.073

Hept-1-ene

2.694

1.273

1.248

1.234

1.192

Oct-1-ene

2.694

1.449

1.402

1.393

1.345

Non-1-ene

2.694

1.640

1.607

1.580

1.476

Pent-1-yne

2.694

0.599

0.611

0.638

0.594

Hex-1-yne

2.694

0.596

0.650

0.668

0.697

Hept-1-yne

2.694

0.806

0.789

0.793

0.746

Oct-1-yne

2.694

0.738

0.820

0.838

0.839

Non-1-yne

2.694

0.862

0.871

0.894

0.931

Cyclopentane

2.694

0.845

0.838

0.809

0.812

Cyclohexane

2.694

0.980

0.947

0.887

0.883

Cycloheptane

2.694

0.993

0.965

0.952

0.931

Cyclooctane

2.694

1.248

1.160

1.077

1.011

Methanol

2.694

0.526

0.482

0.446

0.381

Ethanol

2.694

0.547

0.513

0.495

0.423

Benzene

2.694

0.388

0.410

0.437

0.432

Toluene

2.694

0.528

0.523

0.574

0.584

Ethylbenzene

2.694

0.661

0.677

0.686

0.734

Acetone

2.694

0.426

0.427

0.428

0.431

Butan-2-one

2.694

0.438

0.442

0.447

0.451

 

Table 5-8: Average activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium tetrafluoroborate at T = (313.15, 333.15, 353.15 and 373.15) K.

 

Experimental at

/K

 

Solute

T=313.15

T=333.15

T=353.15

T=373.15

n-pentane.

1.258

1.240

1.219

1.196

n-hexane

1.400

1.384

1.360

1.332

n-heptane

1.578

1.564

1.526

1.487

n-octane

1.790

1.749

1.706

1.660

n-nonane

2.061

1.978

1.924

1.862

n-decane

2.380

2.263

2.178

2.097

Pent-1-ene

0.994

0.987

0.975

0.973

Hex-1-ene

1.109

1.105

1.104

1.102

Hept-1-ene

1.260

1.249

1.244

1.227

Oct-1-ene

1.426

1.407

1.403

1.382

Non-1-ene

1.635

1.598

1.574

1.536

Pent-1-yne

0.584

0.601

0.631

0.642

Hex-1-yne

0.603

0.648

0.675

0.701

Hept-1-yne

0.738

0.743

0.771

0.783

Oct-1-yne

0.749

0.819

0.854

0.881

Non-1-yne

0.823

0.871

0.922

0.978

Cyclopentane

0.843

0.827

0.811

0.807

Cyclohexane

0.975

0.941

0.903

0.894

Cycloheptane

1.020

0.986

0.967

0.948

Cyclooctane

1.180

1.124

1.075

1.037

Methanol

0.537

0.491

0.456

0.417

Ethanol

0.579

0.533

0.501

0.451

Benzene

0.410

0.425

0.442

0.448

Toluene

0.526

0.531

0.560

0.574

Ethylbenzene

0.660

0.671

0.684

0.715

Acetone

0.431

0.432

0.433

0.435

Butan-2-one

0.444

0.447

0.451

0.454

 

Table 5-9: Partial molar excess enthalpies at infinite dilution for organic solutes in the

ionic liquid trihexyltetradecylphosphonium tetrafluoroborate, calculated from the Gibbs-
Helmholtz equation.

SOLUTE

Linear regression using Eq.(2-11)

 
 
 

n-pentane.

0.096

-0.077

0.984

0.80

n-hexane

0.095

0.035

0.964

0.79

n-heptane

0.115

0.093

0.933

0.96

n-octane

0.144

0.123

0.989

1.20

n-nonane

0.192

0.108

0.997

1.60

n-decane

0.241

0.093

0.999

2.00

Pent-1-ene

0.044

-0.149

0.952

0.37

Hex-1-ene

0.018

0.065

0.949

0.10

Hept-1-ene

0.048

0.077

0.939

0.40

Oct-1-ene

0.056

0.174

0.940

0.47

Non-1-ene

0.118

0.115

0.988

0.98

Pent-1-yne

-0.195

0.082

0.975

-1.62

Hex-1-yne

-0.290

0.425

0.986

-2.40

Hept-1-yne

-0.124

0.087

0.925

-1.03

Oct-1-yne

-0.312

0.720

0.960

-2.60

Non-1-yne

-0.335

0.870

0.996

-2.78

Cyclopentane

0.088

-0.455

0.966

0.74

Cyclohexane

0.177

-0.594

0.967

1.48

Cycloheptane

0.140

-0.431

0.990

1.17

Cyclooctane

0.253

-0.642

0.999

2.10

Methanol

0.486

-2.169

0.996

4.04

Ethanol

0.472

-2.046

0.981

3.92

Benzene

-0.179

-0.316

0.978

-1.49

Toluene

-0.183

-0.068

0.925

-1.52

Ethylbenzene

-0.149

0.054

0.913

-1.24

Acetone

-0.017

-0.786

0.946

-0.14

Butan-2-one

-0.044

-0.671

0.993

-0.37

 

Chapter 5: Results

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

ln( LP 13)

0.5

0

1

Figure 5-9: Plots of versus for n-alkanes in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () n-pentane, () n-hexane,
(?) n-heptane, (?) n-octane, () n-nonane and (?) n-decane.

 

0.6 0.5 0.4 0.3 0.2 0.1

0

-0.1

 

ln( LP 13)

 
 
 
 

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-10: Plots of versus for alk-1-enes in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-ene, () hex-1-ene,
(?) hept-1ene, (?) oct-1-ene and () non-1-ene.

1n1 L13)

-0.5

-1

0

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-11: Plots of versus for alk-1-ynes in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; (?) pent-1-yne, (?) hex-1-yne,
(x) hept-1-yne, (+) oct-1-yne and (?) non-1-yne.

0.4

ln(1113)

0

-0.4

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-12: Plots of versus for cycloalkanes in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () cyclopentane, () cyclohexane,
(?) cycloheptane and (?) cyclooctane.

 

-0.4 -0.5 -0.6 -0.7 -0.8 -0.9

 

ln(1313)

 
 
 
 

2.6 2.8 3 3.2 3.4

1000K/T

Figure 5-13: Plots of versus for alkanols in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; (?) methanol and (?) ethanol.

ln(111:13)

-0.4

-0.8

-1.2

0

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-14: Plots of versus for alkylbenzenes in [3C6C14P] [BF4] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; (?) benzene, (x) toluene and
(+) ethylbenzene.

 
 
 
 
 

ln(1113)

-0.81
-0.85

 
 
 
 
 
 

Figure 5-15: Plots of versus for ketones in [3C6C14P] [BF4] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; (?) acetone and (?) butan-2-one.

ln(119:13)

-0.5

0.5

-1

0

1

0 1 2 3 4 5 6 7 8 9 10 11

Number of carbon atoms, Nc

Figure 5-16: Plots of versus the number of carbon atoms at 313.15 K for () n-alkanes,

() alk-1-enes, (?) alk-1-ynes, (?) cycloalkanes, () alkanols, (?) alkylbenzenes and
(?) ketones in [3C6C14P] [BF4].

5.1.4. Trihexyltetradecylphosphonium hexafluorophosphate, [3C6C14P] [PF6] Table 5-10: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium hexafluorophosphate with n3 = 1.615 mmol (25.1 %) at T =
(313.15, 333.15, 353.15 and 363.15) K.

 

Experimental

at /K

 
 

Solute

n3/mmol

T=313.15

T=333.15

T=353.15

T=363.15

n-pentane.

1.615

1.773

1.517

1.268

1.193

n-hexane

1.615

1.960

1.687

1.482

1.430

n-heptane

1.615

2.246

1.806

1.648

1.555

n-octane

1.615

2.528

2.120

1.869

1.812

n-nonane

1.615

2.774

2.426

2.088

1.984

n-decane

1.615

3.278

2.620

2.295

2.186

Pent-1-ene

1.615

1.421

1.236

1.066

1.049

Hex-1-ene

1.615

1.665

1.410

1.138

1.128

Hept-1-ene

1.615

1.857

1.581

1.321

1.269

Oct-1-ene

1.615

2.023

1.752

1.514

1.437

Non-1-ene

1.615

2.400

2.013

1.617

1.539

Dec-1-ene

1.615

2.788

2.276

1.827

1.750

Pent-1-yne

1.615

1.025

0.549

0.697

0.668

Hex-1-yne

1.615

1.145

0.649

0.780

0.732

Hept-1-yne

1.615

1.216

0.630

0.833

0.798

Oct-1-yne

1.615

1.369

0.754

0.962

0.928

Non-1-yne

1.615

1.476

0.827

1.063

0.978

Dec-1-yne

1.615

1.595

0.865

1.117

1.031

Cyclopentane

1.615

1.348

1.079

0.901

0.883

Cyclohexane

1.615

1.475

1.212

0.969

0.951

Cycloheptane

1.615

1.574

1.299

1.084

1.035

Cyclooctane

1.615

1.643

1.402

1.171

1.115

Cyclononane

1.615

1.883

1.567

1.319

1.234

Methanol

1.615

2.115

1.412

0.938

0.855

Ethanol

1.615

2.215

1.515

0.989

0.893

Benzene

1.615

0.659

0.543

0.438

0.415

Toluene

1.615

0.772

0.671

0.535

0.506

Ethylbenzene

1.615

0.961

0.783

0.630

0.626

Propylbenzene

1.615

1.103

0.949

0.779

0.735

Acetone

1.615

0.648

0.517

0.388

0.371

Butan-2-one

1.615

0.677

0.524

0.396

0.375

 

Table 5-11: Activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium hexafluorophosphate with n3 = 2.659 mmol (29.4 %) at T =
(313.15, 333.15, 353.15 and 363.15) K.

 

Experimental

at /K

 
 

Solute

n3/mmol

T=313.15

T=333.15

T=353.15

T=363.15

n-pentane.

2.659

1.921

1.553

1.288

1.251

n-hexane

2.659

2.072

1.795

1.496

1.472

n-heptane

2.659

2.194

2.004

1.668

1.651

n-octane

2.659

2.492

2.184

1.831

1.742

n-nonane

2.659

3.040

2.468

2.054

2.004

n-decane

2.659

3.324

2.896

2.309

2.236

Pent-1-ene

2.659

1.541

1.368

1.134

1.069

Hex-1-ene

2.659

1.701

1.436

1.264

1.174

Hept-1-ene

2.659

1.903

1.591

1.361

1.299

Oct-1-ene

2.659

2.199

1.794

1.484

1.433

Non-1-ene

2.659

2.496

1.975

1.627

1.549

Dec-1-ene

2.659

2.810

2.290

1.851

1.740

Pent-1-yne

2.659

1.061

0.861

0.713

0.654

Hex-1-yne

2.659

1.125

0.889

0.758

0.714

Hept-1-yne

2.659

1.250

1.034

0.831

0.822

Oct-1-yne

2.659

1.333

1.160

0.952

0.942

Non-1-yne

2.659

1.498

1.247

1.011

0.966

Dec-1-yne

2.659

1.615

1.315

1.063

1.009

Cyclopentane

2.659

1.344

1.141

0.941

0.871

Cyclohexane

2.659

1.459

1.234

1.049

0.991

Cycloheptane

2.659

1.602

1.335

1.100

1.049

Cyclooctane

2.659

1.799

1.442

1.199

1.143

Cyclononane

2.659

1.891

1.601

1.333

1.304

Methanol

2.659

2.139

1.444

0.984

0.881

Ethanol

2.659

2.315

1.491

1.015

0.911

Benzene

2.659

0.705

0.553

0.448

0.419

Toluene

2.659

0.814

0.639

0.541

0.516

Ethylbenzene

2.659

1.005

0.835

0.694

0.642

Propylbenzene

2.659

1.139

0.939

0.799

0.777

Acetone

2.659

0.694

0.507

0.404

0.381

Butan-2-one

2.659

0.735

0.542

0.410

0.373

 

Table 5-12: Average activity coefficients at infinite dilution of organic solutes in

trihexyltetradecylphosphonium hexafluorophosphate
at T = (313.15, 333.15, 353.15 and 363.15) K.

 

Experimental at

/K

 

Solute

T=313.15

T=333.15

T=353.15

T=363.15

n-pentane.

1.847

1.535

1.278

1.222

n-hexane

2.016

1.741

1.489

1.451

n-heptane

2.220

1.905

1.658

1.603

n-octane

2.510

2.152

1.850

1.777

n-nonane

2.907

2.447

2.071

1.994

n-decane

3.301

2.758

2.302

2.211

Pent-1-ene

1.481

1.302

1.100

1.059

Hex-1-ene

1.683

1.423

1.201

1.151

Hept-1-ene

1.880

1.586

1.341

1.284

Oct-1-ene

2.111

1.773

1.499

1.435

Non-1-ene

2.448

1.994

1.622

1.544

Dec-1-ene

2.799

2.283

1.839

1.745

Pent-1-yne

1.043

0.852

0.705

0.661

Hex-1-yne

1.135

0.898

0.769

0.723

Hept-1-yne

1.233

1.003

0.832

0.810

Oct-1-yne

1.351

1.161

0.957

0.935

Non-1-yne

1.487

1.250

1.037

0.972

Dec-1-yne

1.605

1.354

1.090

1.020

Cyclopentane

1.346

1.110

0.921

0.877

Cyclohexane

1.467

1.223

1.009

0.971

Cycloheptane

1.588

1.317

1.092

1.042

Cyclooctane

1.721

1.422

1.185

1.129

Cyclononane

1.887

1.584

1.326

1.269

Methanol

2.127

1.428

0.961

0.868

Ethanol

2.265

1.503

1.002

0.902

Benzene

0.682

0.548

0.443

0.417

Toluene

0.793

0.655

0.538

0.511

Ethylbenzene

0.983

0.809

0.662

0.634

Propylbenzene

1.121

0.944

0.789

0.756

Acetone

0.671

0.512

0.396

0.376

Butan-2-one

0.706

0.533

0.403

0.374

 

Table 5-13: Partial molar excess enthalpies at infinite dilution for organic solutes in the

ionic liquid trihexyltetradecylphosphonium hexafluorophosphate calculated from the Gibbs-
equation.

SOLUTE

Linear regression using Eq.(2-11)

 
 
 
 

n-pentane.

0.918

-2.325

0.999

7.63

n-hexane

0.742

-1.673

0.999

6.17

n-heptane

0.722

-1.516

0.999

6.00

n-octane

0.765

-1.528

0.999

6.36

n-nonane

0.839

-1.621

0.999

6.98

n-decane

0.894

-1.668

0.999

7.43

Pent-1-ene

0.754

-2.014

0.999

6.27

Hex-1-ene

0.844

-2.181

0.999

7.02

Hept-1-ene

0.845

-2.075

0.999

7.03

Oct-1-ene

0.855

-1.991

0.999

7.11

Non-1-ene

1.026

-2.388

0.999

8.53

Dec-1-ene

1.053

-2.338

0.999

8.76

Pent-1-yne

0.741

-1.979

0.999

6.16

Hex-1-yne

0.845

-2.183

0.999

7.03

Hept-1-yne

0.850

-2.087

0.999

7.07

Oct-1-yne

0.857

-1.998

0.999

7.13

Non-1-yne

1.028

-2.396

0.999

8.55

Dec-1-yne

1.093

-2.445

0.982

9.09

Cyclopentane

0.949

-2.741

0.999

7.89

Cyclohexane

0.925

-2.578

0.999

7.69

Cycloheptane

0.936

-2.533

0.999

7.78

Cyclooctane

0.933

-2.445

0.999

7.76

Cyclononane

0.882

-2.188

0.999

7.33

Methanol

1.989

-5.611

0.999

16.54

Ethanol

2.042

-5.718

0.999

16.98

Benzene

1.086

-3.860

0.999

9.03

Toluene

0.975

-3.352

0.999

8.11

Ethylbenzene

0.980

-3.154

0.999

8.15

Propylbenzene

0.878

-2.694

0.999

7.30

Acetone

1.294

-4.545

0.999

10.76

Butan-2-one

1.408

-4.853

0.999

11.71

 

1.4

1.2

1

ln(111:i3)

0.8

0.6

0.4

0.2

0

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-17: Plots of versus for alkanes in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () n-pentane, () n-hexane,
(?) n-heptane, (?) n-octane, () n-nonane and (?) n-decane.

ln( IIP i3)

0.8

0.6

0.4

0.2

1.2

0

1

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-18: Plots of versus for alk-1-enes in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-ene, () hex-1-ene,
(?) hept-1-ene, (?) oct-1-ene and () non-1-ene.

ln(111:13)

0.6
0.4
0.2

0 -0.2 -0.4 -0.6

 
 

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-19: Plots of versus for alk-1-ynes in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-yne, () hex-1-yne,
(?) hept-1-yne and (?) oct-1-yne.

0.8

0.4

ln(I I 113)

0

-0.4

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-20: Plots of versus for cycloalkanes in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; (?) cyclopentane, (?) cyclohexane,
() cycloheptane, (?) cyclooctane and (?) Cyclononane.

 

1
0.5
0
-0.5

 

ln(111:13)

 
 
 
 

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-21: Plots of versus for alkanols in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () methanol and (?) ethanol

ln( 11P13)

0.5
0
-0.5
-1

 
 

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-22: Plots of versus for alkylbenzenes in [3C6C14P] [PF6] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; () benzene, () toluene,
(?) ethylbenzene and (?) propylbenzene.

 

-0.3
-0.7
-1.1

 

ln(I 1 113)

 
 
 
 

2.7 2.8 2.9 3 3.1 3.2 3.3

1000K/T

Figure 5-23: Plots of versus for ketones in [3C6C14P] [PF6] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () acetone and () butan-2-one.

ln(I 1 113)

1.2 0.9 0.6 0.3

0 -0.3 -0.6

 
 

0 1 2 3 4 5 6 7 8 9 10 11

Nc

Figure 5-24: Plots of versus the number of carbon atoms at 313.15 K for ()n-alkanes, ()

alk-1-enes, (?) alk-1-ynes, (?) cycloalkanes, () alkanols, (?) alkylbenzenes and (?)

ketones in [3C6C14P] [PF6].

5.1.5. Methyltrioctylammonium bis (trifluoromethylsulfonyl) imide, [C13C8N] [Tf2N]. Table 5-14: Activity coefficients at infinite dilution of organic solutes in

methyltrioctylammonium bis (trifluoromethylsulfonyl) imide with n3 = 1.77 mmol (25.33 %) at
T = (303.15, 313.15 and 323.15) K.

 

Experimental at

/K

 

Solute

n3/mmol

T=303.15

T=313.15

T=323.15

n-pentane

1.77

1.47

1.44

1.42

n-hexane

1.77

1.70

1.72

1.69

n-heptane

1.77

1.85

1.83

1.83

n-octane

1.77

2.17

2.06

2.04

n-nonane

1.77

2.57

2.39

2.21

n-decane

1.77

3.20

2.72

2.50

Pent-1-ene

1.77

1.16

1.17

1.14

Hex-1-ene

1.77

1.22

1.21

1.21

Hept-1-ene

1.77

1.44

1.43

1.42

Oct-1-ene

1.77

1.69

1.67

1.66

Non-1-ene

1.77

1.99

1.91

1.85

Dec-1-ene

1.77

2.22

2.11

2.05

Pent-1-yne

1.77

0.72

0.74

0.75

Hex-1-yne

1.77

0.83

0.86

0.87

Hept-1-yne

1.77

0.89

0.91

0.92

Oct-1-yne

1.77

1.05

1.06

1.08

Non-1-yne

1.77

1.15

1.17

1.18

Dec-1-yne

1.77

1.30

1.31

1.34

Cyclopentane

1.77

0.90

0.98

0.97

Cyclohexane

1.77

1.18

1.19

1.16

Cycloheptane

1.77

1.32

1.31

1.26

Cyclooctane

1.77

1.54

1.47

1.43

Cyclononane

1.77

1.74

1.68

1.61

Methanol

1.77

1.26

1.19

1.11

Ethanol

1.77

1.32

1.24

1.13

Benzene

1.77

0.45

0.43

0.43

Toluene

1.77

0.51

0.52

0.53

Acetone

1.77

0.35

0.38

0.44

Butan-2-one

1.77

0.34

0.35

0.39

 

Table 5-15: Activity coefficients at infinite dilution of organic solutes in

methyltrioctylammonium bis (trifluoromethylsulfonyl) imide with n3 = 2.044 mmol (29.63 %)
at T = (303.15, 313.15 and 323.15) K.

Experimental at /K

Solute

n3/mmol

T=303.15

T=313.15

T=323.15

n-pentane

2.044

1.43

1.44

1.44

n-hexane

2.044

1.68

1.60

1.61

n-heptane

2.044

1.83

1.81

1.79

n-octane

2.044

2.23

2.16

2.10

n-nonane

2.044

2.59

2.39

2.21

n-decane

2.044

3.00

2.72

2.50

Pent-1-ene

2.044

1.14

1.11

1.12

Hex-1-ene

2.044

1.30

1.29

1.27

Hept-1-ene

2.044

1.44

1.43

1.42

Oct-1-ene

2.044

1.69

1.67

1.66

Non-1-ene

2.044

1.99

1.91

1.85

Dec-1-ene

2.044

2.22

2.11

2.05

Pent-1-yne

2.044

0.74

0.74

0.77

Hex-1-yne

2.044

0.83

0.84

0.85

Hept-1-yne

2.044

0.89

0.91

0.92

Oct-1-yne

2.044

1.05

1.06

1.08

Non-1-yne

2.044

1.15

1.17

1.18

Dec-1-yne

2.044

1.30

1.31

1.34

Cyclopentane

2.044

1.10

1.00

0.99

Cyclohexane

2.044

1.20

1.15

1.14

Cycloheptane

2.044

1.34

1.29

1.28

Cyclooctane

2.044

1.52

1.47

1.43

Cyclononane

2.044

1.74

1.68

1.61

Methanol

2.044

1.24

1.17

1.15

Ethanol

2.044

1.34

1.24

1.17

Benzene

2.044

0.43

0.45

0.47

Toluene

2.044

0.51

0.52

0.53

Acetone

2.044

0.35

0.38

0.44

Butan-2-one

2.044

0.34

0.37

0.41

 

Table 5-16: Average activity coefficients at infinite dilution of organic solutes in

methyltrioctylammonium bis (trifluoromethylsulfonyl) imide
at T = (303.15, 313.15 and 323.15) K.

Experimental

at /K

 

Solute

T=303.15

T=313.15

T=323.15

n-pentane

1.45

1.44

1.43

n-hexane

1.69

1.66

1.65

n-heptane

1.84

1.82

1.81

n-octane

2.20

2.11

2.07

n-nonane

2.58

2.39

2.21

n-decane

3.10

2.72

2.50

Pent-1-ene

1.15

1.14

1.13

Hex-1-ene

1.26

1.25

1.24

Hept-1-ene

1.44

1.43

1.42

Oct-1-ene

1.69

1.67

1.66

Non-1-ene

1.99

1.91

1.85

Dec-1-ene

2.22

2.11

2.05

Pent-1-yne

0.73

0.74

0.76

Hex-1-yne

0.83

0.85

0.86

Hept-1-yne

0.89

0.91

0.92

Oct-1-yne

1.05

1.06

1.08

Non-1-yne

1.15

1.17

1.18

Dec-1-yne

1.30

1.31

1.34

Cyclopentane

1.00

0.99

0.98

Cyclohexane

1.19

1.17

1.15

Cycloheptane

1.33

1.30

1.27

Cyclooctane

1.53

1.47

1.43

Cyclononane

1.74

1.68

1.61

Methanol

1.25

1.18

1.13

Ethanol

1.33

1.24

1.15

Benzene

0.44

0.44

0.45

Toluene

0.51

0.52

0.53

Acetone

0.35

0.38

0.44

Butan-2-one

0.34

0.36

0.40

 

Table 5-17: Excess molar enthalpies at infinite dilution of organic solutes in the ionic

liquid methyltrioctylammonium bis (trifluoromethylsulfonyl) imide, calculated using the Gibbs-
Helmholtz equation.

SOLUTE

Linear regression using Eq.(2-11)

 
 
 
 

n-pentane

0.694

0.142

1.00

5.77

n-hexane

0.120

0.128

0.92

1.00

n-heptane

0.082

0.338

0.97

0.68

n-octane

0.305

-0.220

0.96

2.53

n-nonane

0.774

-1.606

1.00

6.44

n-decane

1.075

-2.425

0.99

8.93

Pent-1-ene

0.088

-0.150

1.00

0.73

Hex-1-ene

0.080

-0.033

1.00

0.67

Hept-1-ene

0.105

0.028

0.96

0.87

Oct-1-ene

0.120

0.128

0.92

1.00

Non-1-ene

0.419

-0.698

0.98

3.48

Dec-1-ene

0.419

-0.580

0.97

3.48

Pent-1-yne

-0.201

0.348

0.97

-1.67

Hex-1-yne

-0.178

0.402

0.96

-1.48

Hept-1-yne

-0.111

0.250

1.00

-0.92

Oct-1-yne

-0.140

0.517

0.97

-1.16

Non-1-yne

-0.129

0.563

0.97

-1.07

Dec-1-yne

-0.114

0.640

0.96

-0.95

Cyclopentane

0.101

-3.333

1.00

0.84

Cyclohexane

0.171

-0.390

1.00

1.42

Cycloheptane

0.231

-0.476

1.00

1.92

Cyclooctane

0.338

-0.692

0.99

2.81

Cyclononane

0.386

-0.715

1.00

3.21

Methanol

0.505

-1.445

0.99

4.20

Ethanol

0.727

-2.113

1.00

6.05

Benzene

-0.112

-0.454

0.75

-0.93

Toluene

-0.286

0.267

0.97

-2.38

Acetone

-0.962

2.062

0.98

-8.00

Butan-2-one

-1.029

2.349

1.00

-8.56

 

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

1.2

1

1n(L13)

0.8

0.6

0.4

0.2

Figure 5-25: Plots of versus for alkanes in [C13C8N] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () n-pentane, () n-hexane,
(?) n-heptane, (?) n-octane, () n-nonane and (?) n-decane.

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000/T/K-1

In(L13)

0.8

0.6

0.4

0.2

0

1

Figure 5-26: Plots of versus for alk-1-enes in [C13C8N] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-ene, () hex-1-ene,
(?) hept-1-ene, (?) oct-1-ene, () non-1-ene and (?) dec-1-ene.

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

In(L13)

-0.1

-0.2

-0.3

-0.4

0.4

0.3

0.2

0.1

0

Figure 5-27: Plots of versus for alk-1-ynes in [C13C8N] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () pent-1-y-ne, () hex-1-yne,
(?) hept-1-yne, (?) oct-1-yne, () non-1-yne and (?) dec-1-yne.

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

0.6

0.5

0.4

lii(LP13)

0.3

0.2

0.1

0

-0.1

Figure 5-28: Plots of versus for cycloalkanes in [C13C8N] [Tf2N] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; () cyclopentane,
() cyclohexane, (?) cycloheptane, (?) cyclooctane and () cyclononane.

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

lii(LP13)

0.26

0.22

0.18

0.14

0.3

0.1

Figure 5-29: Plots of versus for alkanols in [C13C8N] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () methanol and () ethanol.

 

-0.6 -0.65 -0.7 -0.75

 
 

ln(ffi3)

 
 
 

-0.8

-0.85

 
 
 
 
 
 

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

Figure 5-30: Plots of versus for alkylbenzenes in [C13C8N] [Tf2N] together with a

linear correlation of the data using the Gibbs-Helmholtz equation; () benzene and () toluene.

-0.75

-0.8

-0.85

hi( Du 13)

-0.9

-0.95

-1

-1.05

-1.1

-1.15

3.05 3.1 3.15 3.2 3.25 3.3 3.35

1000K/T

Figure 5-31: Plots of versus for ketones in [C13C8N] [Tf2N] together with a linear

correlation of the data using the Gibbs-Helmholtz equation; () acetone and () butan-2-one.

0 1 2 3 4 5 6 7 8 9 10 11

Number of Carbon atoms, Nc

ln( LP13)

-0.5

-1.5

0.5

1.5

-1

-2

0

1

Figure 5-32: Plots of versus the number of carbon atoms at 313.15 K for () n-alkanes,

(?) alk-1-enes, and (?) alk-1-ynes, (*) cycloalkanes, () alkanols, and (?) alkylbenzenes and
(+) ketones in [C13C8N] [Tf2N].

précédent sommaire suivant










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Tu supportes des injustices; Consoles-toi, le vrai malheur est d'en faire"   Démocrite