Conclusion
La modélisation d'une économie gouvernée
par les phénomènes aléatoires conduit aux mauvaises
prévisions rendant certainement les politiques économiques
inefficaces.
70
Bibliographie
[1] N. U. Ahmed. Linear and Nonlinear Filtering for
Scientists and Engineers. World Scientific, Singapore, 1998.
[2] Y. Ait Sahalia. Testing continuous - time models of the
spot interst rate. Review of Financial Studies, 9 :385 - 426, 1996.
[3] Y. Ait Sahalia. Transition densities for interest rates
and other nonlinear diffusions. Journal of Finance, 54 :499 - 547,
1999.
[4] Y. Ait Sahalia. Maximum likelihood estimation of
discretely sampled diffusions : A closed - form approximation approach.
Econometrica, 70 :223 - 262, 2002.
[5] Y. Ait-Sahalia, Lars P. Hansen, and Jose A. Scheinkman.
Operator Methods for Continuous-Time Markov Processes, volume Handbook
of Financial Econometrics : Tools and Techniques. Elsevier, North Holland,
2010.
[6] Y. Ait Sahalia and Robert Kimmel. Maximum likelihood
estimation of stochastic volatility models. Journal of Financial Economics,
83 :413 - 452, 2007.
[7] J. Albert. Bayesian Computation with R. John
Wiley and Sons, New York, 2 edition, 2009.
[8] S. Albeverio, R. Fan, and F. Herzberg. Hyperfinite
Dirichlet Forms and Stochastic Processes. Verlag. Springer, Berlin and
Heidenlberg, 2011.
[9] R. Aldrovandi. Special Matrices of Mathematical
Physics Sochas-tic,Circulant and Bell Matrices. World Scientific, Danvers,
2001.
[10] E. Allen. Modeling with Ito Stochastic Differential
Equation. Springer, 2007.
[11]
71
T. Amemiya. Advanced Econometrics. Harvard University
Press, Cambridge, 1985.
[12] D. Applebaum. Lévy Processes and Stochastic
Calculus. Cambridge University Press, Cambridge, 2 edition, 2009.
[13] D. Ardia. Financial Risk Management with Bayesian
Estimation of GARCH Models Theory and Applications. Verlag. Springer,
Berlin, 2008.
[14] G. Aubert and P. Kornprobst. Mathematical Problems
in Image Processing Partial Differential Equations and the Calculus of
Variations. Springer Science + Business Media, New York, 2 edition,
2006.
[15] L. Bachelier. Théorie de la
spéculation. PhD thesis, Ecole Normale Supérieure de Paris,
Paris, mars 1900.
[16] J. Bai. Testing for parameter constancy in linear
regressions : An empirical distribution function approach. Econometrica,
64(3) :597 - 622, May 996.
[17] Z. Bai, Y. Chen, and Y. C. Lian. Random Matrix
Theory and Its Applications. World Scientific, Danvers, 2009.
[18] A. V. Balakrishnan. Kalman Filtering Theory.
Optimization Software, New York, 1984.
[19] Y. Bard. Nonlinear Parameter Estimation.
Academic Press, New York, 1974.
[20] H. Bart, I. Gohberg, M.A. Kaashoek, and A.C.M. Ran.
A State Space Approach to Canonical Factorization with Applications.
Birkhauser, Basel, 2007.
[21] I. V. Basawa, C.C. Heyde, and R.L. Taylor, editors.
Seleted Proceedings of the symposium on Inference for Stochastic Processes,
volume 37. Institute of Mathematical Statistics, 2001.
[22] Ishwar V. Basawa and B.L.S. Prakasa Rao. Statistical
Inference for Stochastic Processes. Acedemic Press, London, 1980.
[23] M. Basin. New Trends in Optimal Filtering and
Control for Polynomial and Time - Delay Systems. Number 380. Springer -
Verlag, Berlin and Heidelberg, 2008.
[24]
72
H. Bauer and Robert B.Burkel. Measure and Integral.
Wlter de Gruy-ter, Berlin, 2001.
[25] Peter H. Baxendale and Sergey V. Lototsky.
Stochastic Differential Equations: Theory and Applications, volume 2
of Interdisciplinary Mathematical Sciences. Danvers, 2007.
[26] F. E. Benth, G. Di Nunno, and T.Zhang T. Lindstrom, B.
Oksental, editors. Stochastic Analysis and Applications, Berlin and
Heidelberg, 2007. The Abel Symposia and The Norwegian Mthematical Society,
Springer - Verla.
[27] James O. Berger. Statistical Decision Theory and
Bayesian Analysis. Springer-Verlag, New York, 2 edition, 1985.
[28] N. Berglund. Martingales et calcul stochastique. Master
2,Université d'Orléans, 2014.
[29] P. Billingsley. Weak Convergence of Measures :
Applications in Probability. SIAM, Philadelphia, 1971.
[30] P. Billingsley. Convergence of Probability Measures.
John Wiley and Sons, Danvers, 2 edition, 1999.
[31] Jaya P.N. Bishwal. Parameter Estimation in
Stochastic Differential Equations. Springer - Verlag, New York, 2008.
[32] F. Black and P. Karasinski. Bond and option pricing when
short rates are lognormal. Financial Analysts Journal, pages 52 - 59,
1991.
[33] F. Black and M. Scholes. The pricing of options and
corporate liabilities. The Journal of Political Economy, 81(3) :637 -
654, 1973.
[34] P. Blanchard, P. Combe, and W. Zheng. Mathematical
and Physical Aspects of Stochastic Mechanics. Springer Verlag, Berlin and
Heidelberg, 1987.
[35] A. Bénassy Quéré, B. Coeuré, P.
Jacquet, and J.Pisani Ferry. Politique économique. De Boeck and
Larcier, Bruxelles, 2004.
[36] T. Bollerslev. A conditional heteroskedastic time series
model for speculative prices and rates of return. The Review of Economics
and Statistics, 69(3) :542 - 547, 1987.
[37]
73
Larry G. Bretthorst. Bayesian Spectrum Analysis and
Parameter Estimation. Springer - Verlag, Heidelberg, 1988.
[38] D. Brigo and F. Mercurio. Interest Rate Models
Theory and Practice with Smile, Inflation and Credit. Springer - Verlag,
Berlin and Heidelberg, 2006.
[39] James V. Candy. Bayesian Signal Processing
Classical,Modern and Particle Filtering Methods. John Wiley and Sons,
Hoboken, 2009.
[40] Bradley P. Carlin and Thomas A. Louis. Bayesian
Methods for Data Analysis. Taylor and Francis Group,LLC, Boca Raton, 3
edition, 2009.
[41] René A. Carmona and Michael R. Tehranchi.
Interest Rate Models an Infinite Dimensional Stochastic Analysis
Perspective. Springer, Berlin and Heidelberg, 2006.
[42] M. Carrasco, Liang Hu, and Werner Ploberger. Optimal
test for markov switching parameters. Econometrica, 82(2) :765 - 784,
March 2014.
[43] J.A. Chao and W.A. Woyczynski. Martingales Theory in
Harmonic Analysis and Banach Spaces. Springer Verlag, Berlin, 1982.
[44] C.K. Chui and G. Chen. Kalman Filtering with Real -
Time Applications. Springer, Berlin Heidelberg, 4 edition, 2009.
[45] K. L. Chung and John B. Walsh. Markov Processes,
Brownian Motion, and Time Symmetry. Springer, Berlin, 2005.
[46] Jacques J.F. Commandeur and S. Jan Koopman. An
introduction to State Space Time Series Analysis Practical Econometrics.
Oxford University Press, Oxford, 2007.
[47] J.C. Cox, J.E. Ingersoll, and S..A. Ross. Atheory of the
term structure of interest rates. Econometrica, 53 :385 - 405,
1985.
[48] Jan S. Cramer. Econometric Application of Maximum
Likelihood Methods. Cambridge University Press, New York, 1986.
[49] S. Cyganowski, P. Kloeden, and J. Ombach. From
Elementary Probability to Stochastic Differential Equations with MAPLE.
Springer - Verlag, Berlin and Heidelberg, 2002.
[50] G. Da Prato and L. Tubaro. Stochastic Differential
Equations and Applications - VII, volume 245 of Lecture Note in Pure
and Applied Mathematics. Chapman and Hall/CRC, Boca Raton, 2006.
[51]
74
A. P. Dempster, N.M. Lair, and D.B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society, 39(1) :1 - 39, 1977.
[52] Dipak K. Dey and C.R.Rao. Bayesian Thinking
Modeling, volume 25 of Handbook of Statistics. Elsevier B.V.,
2005.
[53] J. Durbin and S.J. Koopman. Time Series Analysis by
State Space Methods. Oxford University Press, Oxford, 2004.
[54] D. Durrett. Probability Theory and Examples.
Cambridge University Press, New York, 4 edition, 2010.
[55] G. Evensen. Data Assimilation the ensemble Kalman
Filter. Springer, Berlin and Heidelberg, 2 edition, 2009.
[56] A. Foata and A. Fuchs. Processus Stochastique
Processus de Poisson, chaine de Markov et martingales. Dunod, Paris,
2004.
[57] C. Francq and J. M. Zakoian. GARCH Models
Structure,Statistical inference and Financial Application. John Wiley and
Sons, West Sussex, 1 edition, 2010.
[58] A. Friedman. Stochastic Differential Equations and
Applications. Academic Press, 1975.
[59] D. Gamerman and H.F. Lopes. Markov Chains Monte
Carlo Stochastic Simulation for Bayesian inference. Taylor and Francis
Group, Boca Raton,FL, 2 edition, 2006.
[60] J. Gatheral. The Volatility Surface A practtioner's
Guide. Wiley Finance, Hoboken, 2006.
[61] L. Gawarecki and V. Mandrekar. Stochastic
Differential Equations in Infinite Dimensions with Applications to Stochastic
Partial Differential Equations. Springer Verlag, Berlin and Heidelberg,
2011.
[62] L. Gawarecki and V.Mandrekar. Stochastic
Differential Equations in Infinite Dimensions. Springer, Berlin, 2011.
[63] S. Geisser and W. Johnson. Modes of Parametric
Statistical Inference. John Wiley and Sons, Hoboken, New Jersey, 2006.
[64] A. Gelman, John B. Carlin, Hal S. Stein, and Dolnald
B.Rubin. Baye-sian Data Analysis. Chapman and Hall/CRC, Boca Raton, 2
edition, 2004.
[65]
75
A. Gelman and Xiao Li Meng. Applied Bayesian Modeling and
Causal Inference from Incomplete - Data Perspectives. John Wiley and Sons,
Hoboken, 2004.
[66] Bruce P. Gibbs. Advanced Kalman Filtering Least -
Squares and Modeling a Practical Handbook. John Wiley and Sons, Hoboken,
2011.
[67] G. Gong and W. Semmler. Stochastic Dynamic
Macroeconomics : Theory, Numerics and Empirical Evidence. Oxford
University Press, New York, 2006.
[68] C. Graham and D. Talay. Stochastic Simulation and
Monte Carlo Methods. Springer - Verlag, Berlin and Heidelberg, 2013.
[69] W. Greene and R. Carter Hill. Maximum Simulated
Likelihood Methods and Applications, volume 26 of Advances in
Econometrics. Emerald Group, Howard House, 2010.
[70] William H. Greene. Econometric Analysis.
Pearson Education, Upper Saddle River, 5 edition, 2003.
[71] Mohinders S. Grewal and Agnus P. Andrews. Kalman
Filtering : Theory and Practice using MATLAB. John Wiley and Sons, New
York, 2 edition, 2001.
[72] Damodar N. Gujarati. Basic Econometrics. The
McGraw - Hill, 4 edition, 2005.
[73] James D. Hamilton. A new approach to the economic
analysis of nons-tationary time series and business cycle. Econometrica,
57(2) :357 - 384, March 1989.
[74] James D. Hamilton. Handbook of Econometrics,
volume IV, chapter State Space Models, pages 3041 - 3068. Elvier Science
B.V., 1994.
[75] James D. Hamilton. Time Series Analysis.
Princeton University Press, Princeton, 1994.
[76] James D. Hamilton and Baldev Raj, editors. Advances
in Markov Switching Models. Springer, Berlin and Heidelberg, 2002.
[77] A. Harvey, S. J. Koopman, and N.Shephard. State
Space and Unobserved component models : Theory and Applications. Cambridge
University Press, Cambridge, 2004.
[78]
76
Andrew C. Harvey. Dynamic Models for Volatility and Heavy
Tails with Applications to Financial and Economic Time Series. Econometric
Society Monographs. Cambridge University Press, New York, 2013.
[79] Anton J. Haug. Bayesian Estimation and Tracking : A
Practical Guide. John Wiley and Sons, Hoboken, 2012.
[80] F. Hayashi. Econometrics. Princeton University
Press, Princeton, 2000.
[81] James J. Heckman and Edward E. Leamer, editors.
Handbook of Econometrics, volume 6A. North - Holland Elsevier,
Amsterdam, 2007.
[82] D. Henderson and P. Plaschko. Stochastic
Differential Equations in Science and Engineering. World Scientific
Publishing Co.Pte.Ltd, New Jersey, 2006.
[83] D. Hinrichsen and Pritchard A.J. Mathematical
Systems Theory I : Modelling, State Space Analysis Stability and Robustness.
Springer-Verlag, Berlin and Heidelberg, 2005.
[84] S. L. Hobbs and S.S. Sritharan. Nonlinear filtering
theory for stochastic reactiond - iffusion equations. In N. Gretsky,
J.Goldstein, and J. J. Uhl, editors, Probability and Modern Analysis,
pages 219 - 234. Marcel Dekker, 1997.
[85] Rob J. Hyndman, Anne B. Koetler, J.Keith Ord, and Ralph
D. Snyder. Forecasting with Exponential Smoothing: The State Space Control
Systems. Springer- Verlag, Berlin, 2008.
[86] I. A. Ibragimov and R.Z. Hasminskii. Statistical
Estimation Asymptotic Theory. Springer Science + Business Media, New York,
1981.
[87] N. Ikeda and S. Watanabe. Stochastic Differential
Equations and Diffusion Processes. North - Holland Publishing Company.
Kodansha Scientific Books, New York, 2 edition.
[88] K. Itô. Foundations of stochastic differential
equations in infinity dimensional space. volume 47, Philadelphia, 1984.
Conference Board of the Mathematical Sciences and National Science Foundation,
Society for Industrial and Applied Mathematics.
[89] K. Itô and Henry P. McKean Jr. Diffusion
Processus and their Sample Paths. Springer - Verlag, Berlin and
Heidelberg, 1996.
[90]
77
J. Jacob and Philip E. Protter. Discretization of Processes.
Springer - Verlag, Berlin and Heidelberg, 2012.
[91] P. N. Jaya and N.Bishwal. Parameter Estimation in
Stochastic Differential Equations. Springer - Verlag, Berlin and
Heidelberg, 2008.
[92] Andrew H. Jazwinski. Stochastic Processses and
Filtering Theory. Academic Press, New York, 1970.
[93] M. JeanBlanc. Lectures on mathematical finance. City
University, Hong Kong, June 2001.
[94] F. Jedrzejewski. Modèles aléatoires et
physique probabiliste. Springer - Verlag France, 2009.
[95] A. Jentzen and Peter E. Kloeden. Taylor Approximations
for Stochastic Partial Differential Equations. The Society for Industrial
and Applied Mathematics, Philadelphia, 2011.
[96] Nicholas P. Jewell and John d. Kalbfleisch. Maximum
likelihood estimation of ordered multinomial parameters. Biostatistics,
5(2) :291 - 306, 2004.
[97] P. Kall and J. Mayer. Stochastic linear Programming.
Kluwer Academic Publishers, New York, 2005.
[98] G. Kallianpur and D. Kolzow. Measure Theory
Applications to Stochastic Analysis. Springer Verlag, Berlin and
Heidelberg, 1978.
[99] R. E. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering, 82 :35 - 45,
1960.
[100] R. E. Kalman and R.S.Bucy. New results in linear
filtering and prediction theory. Journal of Basic Engineering, pages
95 - 108, 1961.
[101] I. Karatzas and Steven E.Shreve. Brownian Motion
and Stochastic Calculus. Springer - Verlag, Berlin and Heidelberg,
1988.
[102] D. Kelly and Curtis Smith. Bayesian Inference for
Probabilistic Risk Assessment : A Practitioner's Guidebook. Springer
Verlag London, London, 2011.
[103] Lawrence R. Klein, A. Welfe, and W. Welfe.
Principles of Macroeco-nometric Modeling. Elsevier Science B.V.,
Amsterdam, 1999.
[104]
78
M. Kleptsyna and A. LeBreton. Statistical analysis of the
ornstein - uhlenbeck type process. Statistical Inference for Stochastic
Processes, 5(3) :229 - 248, 2002.
[105] Peter E. Kloeden and E. Platen. Numerical Solution
of Stochastic Differential Equations. Springer, Berlin, 1995.
[106] Peter E. Kloeden and E. Platen. Numerical Solution
of Stochastic Differential Equations, volume 23 of Application of
Mathematics. Springer - Verlag, Berlin and Heidelberg, corrected third
printing edition, 1999.
[107] Vassili N. Kolokoltsov. Nonlinear Markov processes
and Kinetic Equations. Cambridge University Press, New York, 2010.
[108] G. Koop, Dale J. Poitier, and Justin L. Tobias.
Bayesian Econometric Methods. Cambridge University Press, Cambridge,
2007.
[109] V. Krishnan. Nonlinear Filtering and Smoothing : an
Introduction to martingales, stochastic integrals and Estimation. Dover
Publications Inc., Mineola, 1984.
[110] U. Kuckler and Michael Sorensen. Exponential
Families of Stochastic Processes. Springer Verlag, New York, 1997.
[111] H. H. Kuo. Introduction to Stochastic Integrals.
Universitext. Springer Science Business, New York, 2006.
[112] Harold J. Kushner. Approximaion and weak
convergence Methods for Random Processes with Applications to Stochastic
Systems Theory. The MIT Press, Cambridge, 1984.
[113] Harold J. Kushner and P.Dupuis. Numerical Methods
for Stochastic Control Problems in Continuous Time. Springer-Verlag,
2001.
[114] Harold J. Kushner and G.George Yin. Stochastic
Approximation and Recursive Algorithms and Applications. Springer -
Verlag, New York, 2003.
[115] Yu.A. Kutoyants. Estimation of the trend parameter of a
diffusion process. Theory Probability and its Applications, 22 :399 -
405, 1977.
[116] Yury A. Kutoyants. Statistical Inference for
Spatial Poisson Processes. Springer Science+Busmess Media, New York,
1998.
[117]
79
Yury A. Kutoyants. Statistical Inference for ergodic
Diffusion Processes. Springer - Verlag, London, 2004.
[118] L. Le Cam. Asymptotic Methods in Statistical
Decision Theory. Springer - Verlag, New York, 1986.
[119] K. A. Lee, W.-S. Gan, and Sen M. Kuo. Subband
Adaptive Filtering Theory and Implentation. John Wiley and Sons, West
Sussex, 2009.
[120] W. Lembe. Term Structure Modeling and Estimation in
a state space Framework. Springer Verlag, Berlin and Heidelberg, 2006.
[121] Bernard C. Levy. Principles of signal Detection and
Parameter Estimation. Springer Science + Business Media, New York,
2008.
[122] Frank L. Lewis, L. Xie, and D. Popa. Optimal and
Robust Estimation with an Introduction to Stochastic Control Theory.
Taylor and Francis Group, Boca Raton, 2008.
[123] William A. Link and Richard J. Barker. Bayesian
Inference with Ecological Applications. Elsevier, Oxford, 2010.
[124] R. S. Liptser and A.N. Shiryaev. Statistics of
Random Processes :II Applications. Springer - Verlag, New York, 2001.
[125] D. V. Lndley. Introduction to probability and
Statistics :From a Baye-sian Viewpoint. Cambridge University Press, New
York, 1970.
[126] A.W. Lo. Maximum likelihood estiamation of generalized
itô processes with discretely sampled data. Econometric Theory,
4 :231 - 247, 1988.
[127] H. Lutkepohl. New Introduction to Multiple Time
Series Analysis. Springer - Verlag, Berlin and Heidelberg, 2005.
[128] H. Lutkepohl and Markus Kratzig. Applied Time
Series Econometrics. Cambridge University Press, Cambridge, 2004.
[129] G. S. Maddala. Introduction to Econometrics.
MACMILLAN Publishing Company, New York, 2 edition, 1992.
[130] G. S. Maddala, C.R.Rao, and H.D.Vinod, editors.
Handbook of Statistics, volume 11. Elsevier Science Publishers B.V.,
Amsterdam, 1993.
[131] G. S. Maddala and In Moo Kim. Unit
Roots,Cointegration, and Structural Change. Cambridge University Press,
Cambridge, 1998.
[132]
80
Greory N. Mankiw. Macroéconomie. De Boeck
University, Bruxelles, 2 edition, 2001.
[133] R. Mansuy and M. Yor. Aspects of Brownian Motion.
Springer - Verlag, Berlin and Heidelbert, 2008.
[134] J. M. Marin and Christian P. Robert. Bayesian Core
: A Practical Approach to Computational Bayesian Statistics. Springer
Science + Business Media, LLC, New York, 2007.
[135] P. Medvegyev. Stochastic Integration Theory.
Oxford University Press, New York, 2007.
[136] M. Meyer. Contunuous Stochastic Calculus with
Applications to Finance. Chapman and Hall/CRC, Boca Raton, 2001.
[137] Russell B. Millar. Maximum Likelihood Estimation
and Inference. John Wiley and Sons, West Susssex, 2011.
[138] G. N. Milstein. Numerical Integration of Stochastic
Differential Equations. Springer Science + Business Media, Dordrecht,
1995.
[139] G. N. Milstein. Numerical Integration of Stochastic
Differential Equations. Springer Science + Business Media, Dordrecht,
1998.
[140] Yuliya S. Mishura. Stochastic Calculus for
Fractional Brownian Motion and Related Processes. Springer - Verlag,
Berlin and Heidelberg, 2008.
[141] S. K. Mitter and A. Moro, editors. Nonlinear
Filtering and Stochastic Control, Berlin and Heidelberg, July 1983. the
Centro Internationale Matematico Estivo, Springer - Verlag.
[142] John C. Nash and M. Walker Smith. Nonlinear
Parameter Estimation: An Integrated System in BASIC. Nash Information
Service, Ottawa, 1995.
[143] A. O'Hagan. Bayesian Inference, volume 2B of
Kendall's Advanced Theory of Statistics. Oxford University Press, New
Yok, 2000.
[144] A. O'Hagan and Mike West. The Oxford Handbokk of
Applied Bayesian Analysis. Oxford University Press, Oxford, 2010.
[145] B. Oksendal. Stochastic Differential Equations.
Springer-Verlag, Berlin, 5 edition, 2000.
[146]
81
McKean Jr. H. P. Stochastic integrals. Academic
Press, New York, 1969.
[147] E. Pardoux. Markov Processes and Applications
Algorithms, Networks, Genome and Finance. Dunod and John Wiley and Sons,
Paris, 2008.
[148] G.A. Pavliotis and A.M. Stuart. Parameter estimation
for multiscale diffusion. Journal of Statistical Physics, 127(4) :741
- 781, May 2007.
[149] S. Perzat and J. Zabczyh. Stochastic Partial
Differential Equations with Lévy Noise. Cambridge University Press,
New York, 2007.
[150] H. Pham. Optimisation et controle stochastique
appliqués à la finance. Springer - Verlag, Berlin, 2007.
[151] E. Platen and N.Bruti Liberti. Numerical Solution
of Stochastic Differential Equations with jumps in Finance. Springer -
Verlag, Berlin and Heidelberg, 2010.
[152] Y. Pokern, Andrew M. Stuart, and Petter Wiberg.
Parameter estimation for partially observed hypoelliptic diffusions.
Journal of the Statistical Society, 71(1) :49 - 73, 2009. B.
[153] B. L. S. Prakasa Rao. Parameter estimation for linear
stochastic differential equations driven by fractional brownian motion.
Random Operations and Stochastic Equations, 11 :229 - 242, 2003.
[154] B. L. S. Prakasa Rao. Statistical Inference for
Fractional Diffusion Processes. John Wiley and Sons, West Sussex, 2010.
[155] Philip E. Protter. Stochastic Integration and
Differential Equations. Springer - Verlag, Berlin and Heidelberg, 2004.
[156] Christian P. Robert. The Bayesian Choice From
Decision - Theoretic Foundations to Computational Implementation. Springer
Science + Business Media, New York, 2 edition, 2007.
[157] A. Robler. Runge - Kutta Methods for the Numerical
Solution for Stochastic Differential Equations. Springer, Berlin, 2003.
[158] Daniel B. Rowe. Multivariate Bayesian Statistics
Models for Source Separation and Signal Unimixing. Chapman and Hall/CRC,
Boca Raton, 2003.
[159]
82
Thomas H. Scheike and Anders Juul. Maximum likelihood
estimation for cox's regression model under rested case - control sampling.
Bio-statistics, 5(2) :193 - 206, 2004.
[160] David W. Scott. Multivariate Density
Estimation,Theory, Practice and Visualization. John Wiley and Sons,
Hoboken, 1992.
[161] Pavel V. Shevchenko. Modelling Operational Risk
using Bayesian Inference. Springer - Verlag, Berlin and Heidelberg,
2011.
[162] R. Situ. Theory of Stochastic Differential
Equations with Jumps and Applications. Springer Science + Business Media,
New York, 2005.
[163] D. Sorensen and Daniel Gianola. Likelihood Bayesian
and MCMC Methods in Quantitative Genetics. Springer - Verlag, New York,
2002.
[164] P.J.C. Spreij. Stochastic Integration.
Springer Science, New York, 2004.
[165] S. S. Sritharan. Nonlinear filtering of stochastic
navier - stokes equations. In T. Funaki and W.A. Woyczynski, editors,
Nonlinear Stochastic PDEs : Burgers Turbulence and Hydrodynamic Limit
(PDF), pages 247 - 260. Springer-Verlag, 1994.
[166] Nancy L. Stokey. The Economics of Inaction :
Stochastic Control Models with Fixed Costs. Princeton University Press,
Princeton, 2009.
[167] Nancy L. Stokey, Robert E. Lucas Jr., and Edward C.
Prescott. Recursive Methods in Economic Dynamics. Harvard University
Press, Cambridge, 1989.
[168] H. Tanizaki and R.S. Mariano. Prediction, filtering and
smoothig in nonlinear and non normal cases using monte carlo integration.
Journal of Applied Econometrics, 9(2) :163 - 179, 1994.
[169] C. C. Tsui. Robust Control System Design : Advanced
State Space Technique. Marcel Dekker, New York, 2 edition, 2004.
[170] A. van den Bos. Parameter Estimation for Scientists
and Engineers. John Wiley and Sons, Hoboken, 2007.
[171] F. van der Heijder, R.P.W.Duin, D.de Ridder, and
D.M.J.Tax. Classification, Parameter Estimation and State Estimation :An
Engineering Aproach using MATLAB. John Wiley and Sons, West Sussex,
2004.
[172]
83
C. van Eeden. Restricted Parameter Space Estimation
Problems Admissibility and Minimaxity Properties. Springer Science
Business LLC, New York, 2006.
[173] R. van Handel. The stability of conditional markov
processes and markov chains in random environment. The Annals of
Probability, 37(5) :1876 - 1925, 2009.
[174] Carl E. Walsh. Monetary Theory and Policy. The
MIT Press, Cambridge, 3 edition, 2010.
[175] Donald M. Wiberg. State Space and Linear Systems.
Schaums Outline series. McGraw - Hill, New York, 1997.
[176] Robert L. Williams and Douglas A. Lawrence. Linear
State - Space Control Systems. John Willey and Sons, Hoboken, 2007.
[177] J. Xiong. An Introduction to Stochastic Filtering
Theory. Oxford University Press, Oxford, 2008.
[178] A. Yger and J. A. Weil. Mathématiques
Appliquées L3. Pearson Education, Paris, 2009.
[179] N. Yoshida. Estimation for diffusion processes from
discrete observation. Journal of Multivariate Analysis, 41 :220 - 242,
1992.
[180] A. Zaknick. Principles of Adaptive Filters and
Self-learning Systems. Springer - Verlag, London, 2005.
[181] J. Zarzycki. Nonlinear Prediction Ladder - Filters
for Higher - Order Stochastic Sequences. Springer - Verlag, Berlin and
Heidelberg, 1985.
[182] A. Zellner. An Introduction to Bayesian Inference
in Econometrics. JohnWiley and Sons, New York, 1971.
[183] A. Zellner and Joseph B. Kadane. Robustness of
Bayesian Analyses, volume 4 of Studies in Bayesian Econometrics.
Elsevier Science Publishers B.V., 1984.
[184] W. Zou and M. Schechter. Critical Point Theory and
Its Applications. Springer Science + Business Media, New York, 2006.
84
Table des matières
1 Préliminaires mathématiques
1.1 Eléments de la théorie de la mesure et
intégration
|
6
6
|
|
1.1.1
|
Limite inférieure et supérieure
|
7
|
|
1.1.2
|
Espaces vectoriels normés
|
8
|
|
1.1.3
|
Propriétés de l'intégrale des fonctions
étagées positives
|
9
|
|
1.1.4
|
Produit des espaces mesurés
|
10
|
|
1.1.5
|
Conditionnement et indépendance de probabilité. . .
.
|
11
|
1.2
|
Espérance conditionnelle
|
11
|
|
1.2.1
|
Variables aléatoires
|
13
|
|
1.2.2
|
Modes de convergence
|
13
|
1.3
|
Processus stochastiques
|
16
|
|
1.3.1
|
Processus de Markov
|
16
|
|
1.3.2
|
Chaînes de Markov
|
19
|
|
1.3.3
|
Temps d'arrêt
|
21
|
|
1.3.4
|
Martingales à état indépendant
|
22
|
|
1.3.5
|
Mouvement brownien
|
23
|
|
1.3.6
|
Quelques modification du mouvement brownien . . . .
|
24
|
85
1.3.7 Martingales et Semimartingales
2 Equations Différentielles et Intégrales
Stochastiques
|
26
31
|
2.1
|
Calculs stochastique
|
31
|
2.2
|
Equations différentielles stochastiques
|
33
|
|
2.2.1
|
Equations différentielles stochastiques ordinaires . .
|
. . 33
|
|
2.2.2
|
Equations aux dérivées partielles stochastiques
|
34
|
2.3
|
Intégrales stochastiques
|
37
|
|
2.3.1
|
Intégrale Stochastique d'Itô
|
37
|
|
2.3.2
|
Intégrale Stochastique de Stratonovich
|
40
|
2.4
|
Schémas numériques
|
41
|
|
2.4.1
|
Schéma d'Euler
|
42
|
|
2.4.2
|
Schéma de Milstein
|
43
|
|
2.4.3
|
Schéma de Heun
|
44
|
|
2.4.4
|
Méthodes de Runge - Kutta
|
44
|
|
2.4.5
|
Schéma de Platen
|
45
|
3 Applications des intégrales stochastiques
à l'estimation sta-
tistique 46
3.1 Estimation de paramètres des équations
différentielles stochas-
tiques 46
|