1.2.8 : Le mod~le d'évaluation des actifs financiers
à l'internationale (MDAFI,
Arouri M (2009) affirme que la première
génération du MEDAFI repose sur l?hypothèse que les
investisseurs independamment de leurs nationalites utilisent le même
indice des prix pour deflate les rentabilites des differents actifs financiers.
Ces modèles constituent des transpositions nominales du MEDAF
domestique, le portefeuille de tout les investisseurs est la combinaison du
portefeuille du marche mondial est l?actif sans risque. Grouer et Al (1976),
aussi ont distingue des versions plus internationales du modèle propose
par Solnik (1974), Sercu (1980), Stulz (1981), Adler et Dumas (1983). Grouer et
Al (1981) etudient un MEDAI à segmentation partielle où les
primes de risque sont determinees par une combinaison de facteurs
internationaux du risque. Les auteurs trouvent que le risque du taux de change
est apprecie internationalement pour quelques marches emergents. La conclusion
de cette etude dont être consideree avec precaution. Plus recemment,
phylaktis et Ravazola (2004) proposent un MEDAFI à deux regimes qui
specifient explicitement le risque de change comme facteur de risque. Ce
modèle considère que les marches sont strictement segmentes dans
un premier temps et doivent parfaitement integrer dans un second temps. Arouri
(2009) à presente une version conditionnelle du modèle
international d?évaluation des actifs financiers qui tient compte des
deviations de la parite des pouvoirs d?achat et d?une éventuelle
segmentation financière partielle. Il prend le MEDAFI à
integration financière propose par Adler et Dumas (1983).
Concederons un univers avec L+1 pays et N=n+L+1 avec n l?actif
risqué, l?actifs sans risque de marche et L+1 l?actifs sans risque du
pays de la monnaie de reference.
Ils designent par le prix de l?actifs X mesurer dans la monnaie
du pays de référence C. ~ La rentabilite nominale de cet actif
exprime dans la monnaie de reference.
Le modèle s?écrit comme suit.
i i ~ ) ai i
i
Ou ~ suit un processus de Wiener standard.
|