WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Volatilité et accumulation du capital dans les économies subsahariennes

( Télécharger le fichier original )
par Arthur CHOPKENG AWOUNANG
Université de Yaoundé II - Nouveau Programme de Troisième Cycle Inter universitaire (NPTCI ) - Diplôme d'études approfondies (DEA ) en sciences économiques 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.2- La volatilité, un frein au processus du learning by doing : la nécessité de la prise en compte simultanée des deux modes d'apprentissage

Le Learning by doing (Arrow, 1962) est un phénomène essentiel dans la formation et l?accumulation de capital humain. Dans la plupart des emplois, les connaissances théoriques acquises pendant les années d?études scolaires ne constituent que la base de ce qui est

nécessaire à un travailleur pour pouvoir mener sa tâche de manière efficiente. Le plus important est l?expérience et la compétence que les travailleurs ne peuvent obtenir qu?en travaillant. C?est donc un apprentissage non intentionnel (externe). Martin et Rogers (1997 et 2000) mettent en exergue ce fait. Ils établissent que la prolifération du chômage durant les périodes de récession entraine des pertes de capital humain (résultat à l?encontre des conclusions d?Aghion et Saint-paul en 1998). Le raisonnement intuitif derrière ce constat est assez simple : Quand les circonstances ou les prévisions économiques sont défavorables, volatilité, les firmes réduisent leurs personnels, ce qui à son tour prive les travailleurs de gagner en expérience et connaissances productive. La sévérité de la récession amplifie ou restreint la perte en capital humain. La volatilité exerce donc un effet négatif sur l?accumulation de capital humain.

Van Ewijk (1997) incorporent à la fois l?approche en terme de coüt d?opportunité et celle relative au Learning by doing pour expliquer la relation entre volatilité et accumulation de capital humain. Ses résultats montrent que l?effet positif de l?hypothèse du coüt d?opportunité domine lorsque l?économie subit une faible volatilité, mais l?effet négatif issu du Learning by doing prend le pas lorsque la volatilité est plus sévère.

Les conclusions divergentes des différentes théories ci-dessus sont souvent associées à des implications différentes en ce qui concerne le lien volatilité croissance via l?accumulation du capital. A priori, il n?y a pas de raison fondamental qui permette de supposer que cette relation doive absolument être d?un signe particulier, en fonction du mode d?accumulation (intentionnelle ou pas). Egalement, il n?y a pas de raison de supposer que l?accumulation de capital humain provient d?un seul mode d?apprentissage sans que l?autre ne soit pris en compte. Les résultats des modèles précédents dans lesquels c?est le cas sont dès lors difficiles à comparer étant donné leurs différences structurelles.

1.2.1- Le modèle de Blackburn et Galindev (2003) : l'intégration simultanée des deux modes d'apprentissage

Blackburn et Galindev (2003) étendent et consolident la littérature en incluant les deux modes de formation du capital humain dans un seul modèle analytique. L?importance de chaque mode est capturée convenablement par une para métrisation flexible du processus à l?origine du changement technologique qui le réduit à un processus basée entièrement sur un mode ou sur l?autre en fonction de configuration alternative de la valeur du paramètre. Les auteurs se basent sur un modèle de croissance stochastique simple.

L?économie est constituée d?individus identiques avec un horizon temporel infini qui produisent et consomment le meme bien. Le problème de l?agent est donc de maximiser

U= E0? = t [ãtlog(Ct II + ëlog(111- Lt - Htlig â ? [0 1], ë > 0, ( 1 )

Sous contrainte de :

Ct ?ZtLt, ? > 0, á ? (0, 1) (2)

Zt+1 ÙZtHöèt, Ù > 1, ö et è > 0 (3)

L?agente dérive l?utilité espérée de (1) à partir de la consommation Ct et du loisir 1-Lt-Ht, ou Lt represente le temps alloue au travail (production) et Ht celui qui est alloue à l?apprentissage (accroissement du capital humain). Le terme ãt est une variable aleatoire positive qui peut representer une preference, un gout ou un choc de demande suivant un processus stationnaire de moyenne u et variance ?2. La contrainte de budget de l?agent est donner par l?équation (2) qui égalise la consommation et l?output, avec Zt un facteur de variation technologique dans la fonction de production. La technologie evolue selon l?équation (3), qui inclut à la fois les comportements d?apprentissage délibéré (interne) et non delibere (externe). Le premier est representer par Ht, c?est-à-dire la quantite de temps que l?agent alloue intentionnellement à l?accroissement de sa propre productivité, alors que le second est capturé par Åt, le niveau global de l?emploi qui détermine l?ampleur de l?externalité de compétence entre les agents et que chaque agent prend évidement comme donnée. L?importance relative de ces deux paramètres de croissance est déterminée par la magnitude relative des paramètres respectifs ö et è. Les cas extremes qui nous intéressent sont obtenus à partir des configurations {ö > 0, è= 0} (apprentissage exclusivement intentionnel) et {ö= 0, è > 0} (apprentissage exclusivement forcé). Les solutions du modèle sont caracterisees par les règles de decision suivantes concernant Lt et Ht :

Lt l(ãt)= áãt/ [ë+öBu+ áãt] (4)

Ht h(ãt)= öBu/ [ë+öBu+ áãt] (5)

Où B= 1 . Évidemment, l?(.) > 0 et h?(.) < 0 : ce qui signifie intuitivement qu?un

accroissement de ãt, donc par exemple un choc positif (respectivement negatif) de demande
conduit les agents à accorder plus de temps (respectivement moins de temps) au travail et

moins de temps (respectivement plus de temps) à l?apprentissage. Ceci est dû à l?augmentation de l?utilité marginale de la consommation qui accroit le cout d?opportunité des activités liées à l?apprentissage.

En remplaçant (4) et (5) dans (2) et (3) et en appliquant la condition d?équilibre Lt= Åt, on peut obtenir le taux de croissance de la technologie et de l?output entre les périodes :

Zt+1/Zt Ù (öBu)öáèãèt / [ë+öBu+ áãt]ö+è z(ãt) (6)

Ct+1/Ct = Ù (öBu)öáèãtè-áãát+1 / [(ë+öBu+ áãt)ö+è-á(ë+öBu+ áãt+1)á c(ãt, ãt+1)

Comme indiqué dans la littérature existante, l?effet de la volatilité du produit sur l?accumulation du capital humain dépend effectivement du mode d?accumulation de ce capital : on constate ici que lorsque le mode d?apprentissage est exclusivement interne {ö > 0, è= 0}, alors z?(.) < 0, ce qui implique que la croissance de la technologie est contra cyclique. Dans ce cas, la volatilité de l?output conduit effectivement à l?accroissement du capital humain. A l?inverse, si le mode d?apprentissage est externe {ö= 0, è > 0}, z?(.) > 0 et l?évolution de la technologie est pro cyclique. Dans ce cas, la volatilité a un effet négatif sur l?accumulation de capital. Ces résultat divergents sont dérivés des réponses divergentes des variables Ht et Lt décrites plus haut. Des observations similaires peuvent être faites sur le taux de croissance de la production, même si l'expression est un peu plus compliquée. Etant donné que l?output de chaque période dépend de l'état de la technologie et du niveau de l'emploi dans cette période, le taux de croissance de la production d'une période à l'autre est fonction des chocs dans ces deux périodes. Un choc positif ãt provoque une augmentation de Lt, une diminution de la Ht et une augmentation ou une diminution dans Zt +1. Ces effets signifient que Ct augmente, pendant que Ct+1 augmente ou bien diminue, de sorte que le taux de croissance de la production peut augmenter ou diminuer. Dans les cas limites qui nous intéressent, on a c1(.) < 0 pour {ö > 0, è= 0}, pendant que c1(.) > Ou < 0 pour {ö= 0, è > ou < á}. A l?inverse, un choc positif ãt+1a des effets fortement positifs sur la croissance, c2(.) > 0, à travers son effet positif sur Lt+1 et par suite Ct+1. Les propriétés non linéaires de c(.) sont dus à des considérations similaires. Donc c11(.) > 0 pour {ö > 0, è= 0} ; c11(.) > Ou < 0 pour {ö = 0, è > ou < 0} ; et c22(.) < 0 dans tous les cas.

La conclusion du modèle est simple, puisqu?on retrouve les résultats précédemment mis en exergue par Aghion et saint-paul (1998) : la volatilité du PIB affecte positivement l?accumulation de capital humain à cause du fait que durant les récessions, le chômage et la faiblesse des salaires contribuent à baisser le coüt d?opportunité d?allouer plus de temps à l?apprentissage qui est bien entendu interne.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Un démenti, si pauvre qu'il soit, rassure les sots et déroute les incrédules"   Talleyrand