WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Chapter 4

Exponential Growth

Abstract

f

00 g(s)ds < p -- 2

p -- 1, by

0

Our goal in this chapter is to prove that when the initial energy is negative and p > m, then, the

solution with the Lu--norm g

rows as an exponential function provided that

 

using carefully the arguments of the method used in [16], with necessary modification imposed by the nature of our problem.

4.1 Growth result

Our result reads as follows.

Theorem 4.1.1 Suppose that m > 2 and m < p < oo, if n = 1,2, m < p < 2 (n -- 1) if n > 3.

n -- 2 --

p -- 2

00

holds. Then the unique local solution of problem

Assume further that E(0) < 0 and f g(s)ds <

0 p --1

(P) grows exponentially.

Proof. We set

H(t) = --E(t). (4.1)

By multiplying the first equations in (P) by --ut, integrating over Q and using Lemma 2.1.3, we obtain

t

8

<

:

d

~ dt

0 1 9

Z =

2 kutk2

1 2 + 1 @1 ~ 2 + 1

g(s)ds A kruk2 2 (g ~ ru) (t) ~ p b kukp p

2 ;

0

1

1

= a IlutIC -- 2 (g' o Vu)(t) + 2 g(t) 11V ug + w rout g .

(4.2)

By the definition of H(t), (4.2) rewritten as

1

H'(t) = a Mutrm -- 2 2 (g' o Vu) (t) + 1 g (t) 11V 7422 + w 1out122 > 0, Vt > 0. (4.3)

Consequently, E(0) < 0, we have

1 2 + b

H(0) = ~2 ku1k2 2 ~ 2 1 kru0k2 pMucep > 0. (4.4)

It's clear that by (4.1), we have

H(0) < H(t), Vt > 0. (4.5)

Using (G2) , to get

H(t) -- b

p

One implies

2 0 1 3

Zt

kukp 41

p = ~ 2 kutk2 2 + 1 @1 ~ g(s)ds A kruk2 2 + 2 1 (g ~ ru) (t) 5

2

0

< 0, Vt > 0. (4.6)

0 < H(0) < H(t) < b

p

IulPp . (4.7)

 

Let us define the functional

L(t) = H(t) + E./

n

ii ii 2

utudx + E 2 w IIVu112 . (4.8)

 

for E small to be chosen later.

By taking the time derivative of (4.8) , we obtain

L'(t) = H'(t) + E./

n

uutt (t, x)dx + F E 1lutg + Ew I

SI

VutVudx

 

= [wIlVutg + a IlutImm - 2 (g' o Vu) (t) + 12g(t) 11V ug]

+E 1lutg + Ew I

n

Using the first equations in (P), to obtain

VutVudx + E I

n

uttudx. (4.9)

 

Iuuttdx = bllurp HIV ug - col

~

VutVudx - a f

n

1ut1m-2 utudx

 

+I

n

Vu

t

I

0

 

g(t - s)Vu(s, x)dsdx. (4.10)

Inserting (4.10) into (4.9) to get

1

L'(t) = wIlVutg + a MutErmi -2 (g' o Vu) (t) + 1 2g(t)1Vuk22

+ E Iutl22 --E 1Vuk22 + E

t

I

0

g(t - s) f Vu.Vu(s)dxds

 

+ EbIlurp - Ea I

n

lutrm-2 utudx. (4.11)

 

By using (G2) , the last equality takes the form

L'(t) > w 1Vutk22 + a Iutrmm + E Iutk22 -E 1Vuk22 +EbIlurp

(4.12)

+E

t

I

0

g(t - s) f Vu.Vu(s)dxds - Ea f

~ n

lutrm-2 utudo-.

 

To estimate the last term in the right-hand side of (4.12) , we use the following Young's inequality

r

XY <

r

Xr + 8-q

q

Y q, X, Y > 0, (4.13)

 

for all 8 > 0 be chosen later, 1

r

So we have

+

1

q

m

= 1, with r = m and q = m _ 1.

 

I

lutrn-2 utudx <

I

n

lutrn-1 lul dx

 

MuM: + (mm 1) 8(m71) IlutIC , Vt > 0. (4.14)

8m

<

m

Therefore, the estimate (4.12) takes the form

L'(t) > w 11Vut1122+ a Ilutr,,+E Mut1122 -E 11Vu1122+EbIlurp

t

I

0

+ E

g(t - s) I Vu.Vu(s)dxds

E8m
a

m

Murni Ea (m m 1) 8(mini) 11u4117,

> w Ivutk22 + a IlutIC + E Iutk22 -- E 1Vuk22 + Eb 1uk1p

+ E r uk22

t

I

0

g(s)ds + E

t

I

0

g(t - s) I Vu (t) [Vu (s) - Vu (t)] dxds

8

Ealn

m

NC Ea (m m1) 8(mm) IlutIC . (4.15)

Using Cauchy-Schwarz and Young's inequalities to obtain

L' (t) > w 11V utg + a ( 1 - E ( 7 1 77-11) gmln1)) IlutIC + E 1lutg

E 1Vuk22 + Eb bun + E r uk22

t

I

0

g(s)ds

 

t

I

0

E

Mull:

g(t - s) 11V u112 11V u(s) - Vu (t)112 ds -- Earl

m

> w 11V utg + a ( 1 -E (m m1) gmln1)) 11utrni + E Ilutg + Eb Ng

(4.16)

0

+ E @

1

2

t

I

0

)g(s)ds -1 11V ug - E2 (g o V u(t) - Ea: Mull: .

 

Using assumptions to substitute for b Ilurp . Hence, (4.16) becomes

L'(t) > w IlVut112 + a ( 1 -- E (M m1) 8( min1)) Mud: + EllUt112

-FE (311(t) #177; 2 Ilutg + 2 (g 0 Vu) (t) + P2 1 -- I g(s)ds 11Vug

0t

1

2

-FE

t

I

0

)

m

g(s)ds --1 11Vug -- E2 (g o Vu(t) --gam Mull: .

> w 11Vutg + a ( 1 --E (m m -- 1) 8( 7/7-)11 )) 11utr,,+ E (1 + 2) 1lUtg

(4.17)

+EallIVug + Ea2(9 0 Vu(t) -- Eari Murrni + €pH(t).

m

(1 --

f g(s)ds #177; ( P

where al = ) > 0, a2 = P 1 > 0.

0

2 p ) 22 2

In order to undervalue L'(t) with terms of E(t) and since p > m, we have from the embedding LP (Q) c-- Lm (Q) ,

m

Murrni < C Ilugn, < C (Ilurp) P , Vt > 0. (4.18)

for some positive constant C depending on Q only. Since 0 < m

P

< 1, we use the algebraic inequality

 

Zk < (Z #177; 1) < ( 1 #177; 1 ) (Z #177; W) , V Z > 0, 0 < k <1, w > 0, w

to find

m

(Mull;)

P < K (Ng + 11(0)) , Vt > 0, (4.19)

 

1

0)

where K = 1 + H( > 0, then by (4.7) we have

IluEni < C ( 1 + b) Mug, Vt > 0. (4.20)

P

Inserting (4.20) into (4.17), to get

L'(t) > w IlVutg + a ( 1 -- E (m m - 1) 8( 7171)) IlUtIrml + E (1 + 2) 1lUtg

(4.21)

-Ec1 1Vuk22 + Ea2(9 0 Vu(t) -- EC111413p#177; €pH(t).

where Ci = aC r771 ( 1 + b) > 0.

p

By using (4.1) and by the same statements as in [16], we have

2H(t) = - Iutl22 - Ivuk22 +

Zt

0

g(s)ds kruk2 2 ~ (g ~ ru) (t) + 2b p

IlullPp

 

(4.22)

~ ~Iutk22 IVuk22 -- (g Vu) (t) + 2pb Murp , Vt > 0.

Adding and substituting the value 2a3H(t) from (4.21), and choosing 8 small enough such that

a3 < min {al, a2} , we obtain

L'(t) > w Iloutll2 + a (1 -- E (m m1) 8 ( mln1)) Ilutrrni

+ E 11 + 2 -- a3) Iutk22 + E (al a3)1Vuk22

+ E (a2 -- a3) (g o Vu(t) + E (2p b a3 -- C1) 1uk1p

+ E (p -- 2a3) H(t). (4.23)
Now, once 8 is fixed, we can choose E small enough such that

1 -- E (m m1) gmlni) > 0, and L(0) > 0. (4.24)

Therefore, (4.23) takes the form

L'(t) > E0 {H(t) + Ilutg+ I1Vug+ (g o Vu(t)) + Murp} , (4.25)

for some 0 > 0.

Now, using (G2), Young's and Poincare's inequalities in (4.8) to get

L(t) < 01 {H(t) + 11741122 + IlVu112 2},(4.26) for some 01 > 0. Since, H(t) > 0, we have from (4.1)

t

1

2 mutg 2 -10 1- f g(s)ds) 11V 2

-- (g o Vu) (t)+bIIuIIP > 0, Vt > 0. (4.27)

0

Then,

1

2

0

@1 --

Zt

0

g(s)ds) Iloull2 < p b Murp

b
p

<

Murp + (g o Vu) (t). (4.28)

In the other hand, using (G1) , to get

1 1

2 (1 -- l)11V ug 2

< (1 t

-- I g(s)ds) 11V ug

o

b

<

p

11u11pp + (g 0 Vu) (t). (4.29)

Consequently,

2b

11Vug <

p

11u11pp + 2 (g 0 Vu)(t) + 2l 11Vu1122 , b,l > 0. (4.30)

Inserting (4.30) into (4.26) , to see that there exists a positive constant A such that

L(t) < A { H(t)+ 11ut1122+11Vu1122+ (g 0 Vu)(t)+ bp 11urp} , Vt > 0. (4.31)
From inequalities (4.25) and (4.31) we obtain the differential inequality

L'(t)

> it, for some ,u > 0, Vt > 0. (4.32)
L(t)

Integration of (4.32) , between 0 and t gives us

L(t) > L(0) exp (itt) , Vt > 0, (4.33)

From (4.8) and for E small enough, we have

By (4.33) and (4.34) , we have

L(t) < H(t) < b

p

11u11Pp . (4.34)

11u11pp > C exp (ut), C > 0, Vt > 0. (4.35)

Therefore, we conclude that the solution in the LP--norm growths exponentially.

 

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Nous voulons explorer la bonté contrée énorme où tout se tait"   Appolinaire