Chapter 4
Exponential Growth
Abstract
f
00 g(s)ds < p -- 2
p -- 1, by
0
Our goal in this chapter is to prove that when the initial energy
is negative and p > m, then, the
solution with the Lu--norm g
|
rows as an exponential function provided that
|
|
using carefully the arguments of the method used in [16], with
necessary modification imposed by the nature of our problem.
4.1 Growth result
Our result reads as follows.
Theorem 4.1.1 Suppose that m > 2 and m < p < oo, if n =
1,2, m < p < 2 (n -- 1) if n > 3.
n -- 2 --
p -- 2
00
holds. Then the unique local solution of problem
Assume further that E(0) < 0 and f g(s)ds <
0 p --1
(P) grows exponentially.
Proof. We set
H(t) = --E(t). (4.1)
By multiplying the first equations in (P) by --ut, integrating
over Q and using Lemma 2.1.3, we obtain
t
8
<
:
d
~ dt
0 1 9
Z =
2 kutk2
1 2 + 1 @1 ~ 2 + 1
g(s)ds A kruk2 2 (g ~ ru) (t) ~ p b kukp
p
2 ;
0
1
1
= a IlutIC -- 2 (g' o Vu)(t) + 2 g(t) 11V
ug + w rout g .
(4.2)
By the definition of H(t), (4.2) rewritten as
1
H'(t) = a Mutrm -- 2 2 (g' o Vu)
(t) + 1 g (t) 11V 7422 + w
1out122 > 0, Vt > 0. (4.3)
Consequently, E(0) < 0, we have
1 2 + b
H(0) = ~2 ku1k2 2 ~ 2 1
kru0k2 pMucep > 0. (4.4)
It's clear that by (4.1), we have
H(0) < H(t), Vt > 0. (4.5)
Using (G2) , to get
H(t) -- b
p
One implies
|
2 0 1 3
Zt
kukp 41
p = ~ 2 kutk2 2 + 1 @1 ~
g(s)ds A kruk2 2 + 2 1 (g ~ ru) (t) 5
2
0
< 0, Vt > 0. (4.6)
|
0 < H(0) < H(t) < b
p
|
IulPp . (4.7)
|
|
Let us define the functional
|
L(t) = H(t) + E./
n
|
ii ii 2
utudx + E 2 w IIVu112 . (4.8)
|
|
for E small to be chosen later.
By taking the time derivative of (4.8) , we obtain
L'(t) = H'(t) + E./
n
|
uutt (t, x)dx + F E 1lutg + Ew I
SI
|
VutVudx
|
|
= [wIlVutg + a IlutImm - 2
(g' o Vu) (t) + 12g(t) 11V ug]
+E 1lutg + Ew I
n
Using the first equations in (P), to obtain
|
VutVudx + E I
n
|
uttudx. (4.9)
|
|
Iuuttdx = bllurp HIV ug - col
~
|
VutVudx - a f
n
|
1ut1m-2 utudx
|
|
g(t - s)Vu(s, x)dsdx. (4.10)
Inserting (4.10) into (4.9) to get
1
L'(t) = wIlVutg + a
MutErmi -2 (g' o Vu) (t)
+ 1 2g(t)1Vuk22
+ E Iutl22 --E 1Vuk22 + E
|
t
I
0
|
g(t - s) f Vu.Vu(s)dxds
|
|
+ EbIlurp - Ea I
n
|
lutrm-2 utudx. (4.11)
|
|
By using (G2) , the last equality takes the form
L'(t) > w 1Vutk22 + a
Iutrmm + E Iutk22 -E
1Vuk22 +EbIlurp
(4.12)
+E
|
t
I
0
|
g(t - s) f Vu.Vu(s)dxds - Ea f
~ n
|
lutrm-2 utudo-.
|
|
To estimate the last term in the right-hand side of (4.12) , we
use the following Young's inequality
r
XY <
r
|
Xr + 8-q
q
|
Y q, X, Y > 0, (4.13)
|
|
for all 8 > 0 be chosen later, 1
r
So we have
|
+
|
1
q
|
m
= 1, with r = m and q = m _ 1.
|
|
I
|
lutrn-2 utudx <
|
I
n
|
lutrn-1 lul dx
|
|
MuM: + (mm 1) 8(m71) IlutIC , Vt > 0. (4.14)
8m
<
m
Therefore, the estimate (4.12) takes the form
L'(t) > w 11Vut1122+ a Ilutr,,+E
Mut1122 -E 11Vu1122+EbIlurp
t
I
0
+ E
g(t - s) I Vu.Vu(s)dxds
E8m a
m
|
Murni Ea (m m 1)
8(mini) 11u4117,
|
> w Ivutk22 + a IlutIC + E Iutk22 -- E
1Vuk22 + Eb 1uk1p
+ E r uk22
|
t
I
0
|
g(s)ds + E
|
t
I
0
|
g(t - s) I Vu (t) [Vu (s) - Vu (t)] dxds
|
8
Ealn
m
|
NC Ea (m m1) 8(mm) IlutIC .
(4.15)
|
Using Cauchy-Schwarz and Young's inequalities to obtain
L' (t) > w 11V utg + a ( 1 - E ( 7
1
77-11) gmln1))
IlutIC + E 1lutg
E 1Vuk22 + Eb bun + E r uk22
|
t
I
0
|
g(s)ds
|
|
t
I
0
E
Mull:
g(t - s) 11V u112 11V u(s) - Vu (t)112 ds --
Earl
m
> w 11V utg + a ( 1 -E (m m1) gmln1))
11utrni + E Ilutg + Eb Ng
(4.16)
0
+ E @
|
1
2
|
t
I
0
|
)g(s)ds -1 11V ug - E2 (g o V u(t) - Ea:
Mull: .
|
|
Using assumptions to substitute for b Ilurp . Hence,
(4.16) becomes
L'(t) > w IlVut112 + a ( 1 -- E (M
m1) 8( min1)) Mud: + EllUt112
-FE (311(t) #177; 2 Ilutg + 2 (g 0 Vu) (t) +
P2 1 -- I g(s)ds 11Vug
0t
1
2
-FE
t
I
0
)
m
g(s)ds --1 11Vug -- E2 (g o Vu(t) --gam
Mull: .
> w 11Vutg + a ( 1 --E (m m -- 1) 8(
7/7-)11 )) 11utr,,+ E (1 + 2) 1lUtg
(4.17)
+EallIVug + Ea2(9 0 Vu(t) -- Eari
Murrni + €pH(t).
m
(1 --
f g(s)ds #177; ( P
where al = ) > 0, a2 = P 1 > 0.
0
2 p ) 22 2
In order to undervalue L'(t) with terms of E(t) and
since p > m, we have from the embedding LP (Q) c-- Lm
(Q) ,
m
Murrni < C Ilugn,
< C (Ilurp) P , Vt > 0. (4.18)
for some positive constant C depending on Q only. Since 0 <
m
P
|
< 1, we use the algebraic inequality
|
|
Zk < (Z #177; 1) < ( 1 #177; 1 ) (Z #177; W) , V Z > 0,
0 < k <1, w > 0, w
to find
|
m
|
(Mull;)
|
P < K (Ng + 11(0)) , Vt > 0, (4.19)
|
|
1
0)
where K = 1 + H( > 0, then by (4.7) we have
IluEni < C ( 1 + b) Mug, Vt > 0.
(4.20)
P
Inserting (4.20) into (4.17), to get
L'(t) > w IlVutg + a ( 1 -- E (m m -
1) 8( 7171)) IlUtIrml + E (1 + 2)
1lUtg
(4.21)
-Ec1 1Vuk22 + Ea2(9 0 Vu(t) --
EC111413p#177; €pH(t).
where Ci = aC r771 ( 1 + b) > 0.
p
By using (4.1) and by the same statements as in [16], we
have
2H(t) = - Iutl22 - Ivuk22 +
|
Zt
0
|
g(s)ds kruk2 2 ~ (g ~ ru) (t) + 2b
p
|
IlullPp
|
|
(4.22)
~ ~Iutk22 IVuk22 --
(g Vu) (t) + 2pb Murp , Vt > 0.
Adding and substituting the value 2a3H(t) from (4.21), and
choosing 8 small enough such that
a3 < min {al, a2} , we obtain
L'(t) > w Iloutll2 + a (1 -- E (m
m1) 8 ( mln1)) Ilutrrni
+ E 11 + 2 -- a3) Iutk22 + E (al
a3)1Vuk22
+ E (a2 -- a3) (g o Vu(t) + E (2p b
a3 -- C1) 1uk1p
+ E (p -- 2a3) H(t). (4.23) Now, once 8 is fixed, we can
choose E small enough such that
1 -- E (m m1) gmlni) > 0, and L(0) > 0.
(4.24)
Therefore, (4.23) takes the form
L'(t) > E0 {H(t) + Ilutg+ I1Vug+ (g o Vu(t)) +
Murp} , (4.25)
for some 0 > 0.
Now, using (G2), Young's and Poincare's inequalities in (4.8) to
get
L(t) < 01 {H(t) + 11741122 + IlVu112 2},(4.26) for
some 01 > 0. Since, H(t) > 0, we have from (4.1)
t
1
2 mutg 2 -10 1- f g(s)ds) 11V 2
-- (g o Vu) (t)+bIIuIIP > 0, Vt > 0. (4.27)
0
Then,
g(s)ds) Iloull2 < p b Murp
b p
<
Murp + (g o Vu) (t). (4.28)
In the other hand, using (G1) , to get
1 1
2 (1 -- l)11V ug 2
< (1 t
-- I g(s)ds) 11V ug
o
b
<
p
11u11pp + (g 0 Vu) (t). (4.29)
Consequently,
|
2b
11Vug <
p
|
11u11pp + 2 (g 0 Vu)(t) + 2l
11Vu1122 , b,l > 0. (4.30)
|
Inserting (4.30) into (4.26) , to see that there exists a
positive constant A such that
L(t) < A { H(t)+
11ut1122+11Vu1122+ (g 0 Vu)(t)+ bp
11urp} , Vt > 0. (4.31) From inequalities (4.25) and (4.31) we
obtain the differential inequality
L'(t)
> it, for some ,u > 0, Vt > 0. (4.32) L(t)
Integration of (4.32) , between 0 and t gives us
L(t) > L(0) exp (itt) , Vt > 0, (4.33)
From (4.8) and for E small enough, we have
By (4.33) and (4.34) , we have
|
L(t) < H(t) < b
p
|
11u11Pp . (4.34)
|
11u11pp > C exp (ut), C > 0, Vt >
0. (4.35)
Therefore, we conclude that the solution in the
LP--norm growths exponentially.
|
|
|