3.2 Decay of Solutions
We can now state the asymptotic behavior of the solution of
(P). 
Theorem 3.2.1 Suppose that (G1) , (G2) and (2.3) hold. Assume
further that u0 2 W and ui 2 110 (Q) satisfying (3.12) .
Then the global solution satisfies 
E(t) < E (0) exp (--At) , Vt > 0 if m = 2, (3.25) 
or 
E(t) < (E(0)' + Kort)3 , Vt > 0 if m
> 2, (3.26) 
where A and K0 are constants independent of t, r = m 1 and s =
 
2 
2 2 -- m. 
The following Lemma will play a decisive role in the proof of our
result. The proof of this lemma was given in Nakao [34]. 
Lemma 3.2.1 ( [37]) Let cp(t) be a nonincreasing and nonnegative
function defined on [0, T] , T > 1, satisfying 
cpl#177;r(t) < k( (cp (t) -- cp (t + 1)) , t 2 [0,
T] , 
for ko > 1 and r > 0. Then we have, for each t 2 [0, T]
, 
cp (t) < cp (0) exp (--k [t -- 1]+) , r = 0 
c° (t) ~{c (0)--r + k0r [t --
1]+1 
{ 
where [t -- 1]+ = max ft -- 1,0} , and k = ln ( 
k0 k0 1 1) . 
Proof of Theorem 3.2.1. 
Multiplying the first equation in (P), by ut and integrate over
ft to obtain d dt E (t) + w 11out 122 + a Mud 2 : = (g' 2 
Vu) (t) -- g (t) 11V u(t)1122 
Then, integrate the last equality over [t, t + 1] to get 
t+1 t+1 
E(t 1) -- E(t) + w kbut122 ds + a Mud:
ds 
t t 
= 
t+1 
t 
1 (g' 0 V u) (s)ds -- 
  
2 
t+1 
2g(s) 1Vu(t) 1 2ds 
t 
Therefore, 
1 
E(t) -- E(t 1) = fim(t) -- 2 
1 
(g' o VU) (s)ds + 
2 
t+1 
g(t) 1Vu(t)k22 ds, (3.28) 
t 
t+1 
t 
where 
t+1 t+1 
Fm(t) = a Mud: ds w
1Vutk22 ds (3.29) 
t t 
Using Poincaré's inequality to find 
t+1 t+1 
Iutk22 ds < C (12) Mutem ds
(3.30) 
t t 
Exploiting Holder's inequality, we obtain 
0 1 
Zt + 1 
kutk2 m ds ~ @ ds A 
t 
m-2  
m 0 
@ 
1 
2 
~kutk2 m A 
m 
t+1 
t 
t+1 
t 
2 m 
ds 
| 
 0 
~ @ 
 | 
 t+1 
t 
 | 
 1 
2 
~kutk2 m A 
m 
 | 
 2 m 
 | 
 ds. (3.31) 
 | 
 
  
Combining (3.29), (3.30), and (3.31), we obtain, for a constant
C1, depending on ~ 
t+1 
Iutk22 ds < F2(t), C1 > 0.
(3.32) 
t 
~ ~ 
By applying the mean value theorem, ( Theorem 1.3.3. in
chapter1), we get for some t1 2 t; t + 1 ; 
4 
~ ~ 
t + 3 
t2 2 4; t + 1 
| 
 Ilut(ti)112 < 2c (n) 
 | 
 1  
2 F(t), = 1, 2. (3.33) 
 | 
 
  
Hence, by (G2) and since 
t+1 
1Vut122 ds < C2F (t)2, C2
> 0 (3.34) 
t 
1 3 
, there exist t1 2 [t' 4 t + 1 , 4 t2 2 [t + t + 11 such that 
11Vut(ti)1122 < 4C (Q)F(t)2,
i = 1, 2. (3.35) 
Zt 2 
tl 
Next, we multiply the first equation in (P) by u and integrate
over Q x [t1, t2] to obtain 
2 0 1 3 
Zt 
4 @1 ~ g(~)d~ A kru(t)k2 2 ds ~
b kukp 5 ds 
0 
p 
| 
 = ~ 
 | 
 Zt 2 
tl 
 | 
 I 
 | 
 u.uttdxds -- w 
 | 
 Zt 2 
tl 
 | 
 I 
 | 
 Vu.Vutdxds -- a 
 | 
 Zt 2 
tl 
 | 
 Z 
 | 
 u: jutjm-2utdxds 
 | 
 
| 
 t2 
+f 
tl 
 | 
 Zs 
0 
 | 
 g(s -T) I 
 | 
 Vu(s). [Vu(T) -- Vu(s)] dxdrds. 
 | 
 
| 
 Obviously, 
t 2 
Z 
tl 
 | 
 I(s)ds = -- 
 | 
 Zt 2 
tl 
 | 
 Z 
 | 
 u.uttdxds -- w 
 | 
 Zt2 
tl 
 | 
 Z 
 | 
 Vu.Vutdxds -- a 
 | 
 Zt 2 
tl 
 | 
 Z 
 | 
 u.lutr-2 utdxds 
 | 
 
| 
 t 2 
+  f 
 
tl 
 | 
 Zs 
0 
 | 
 g(s -T) I 
 | 
 Vu(s). [Vu(T) -- Vu(s)] dxdrds 
 | 
 
  
  
~~~~~~ 
= 
~~~~~~ 
u.uttdxds 
~~~Zt2 
~~~ 
tl 
I 
2 3 
Z Zt 2 Z 
4 utudx 5 ~ utdxds 
t2 
~ t1 t1 ~ 
| 
 = 
 | 
 ~~~~~~ 
 | 
 Z 
 | 
 ut(t2)u(t2)dx -- I ut(ti)u(ti)dx -- 
 | 
 Zt 2 
tl 
 | 
 kutk2 2ds 
 | 
 ~~~~~~ 
 | 
 ; 
 | 
 
  
t 2 
+  f (g o Vu) (s)ds. (3.36) 
 tl 
 Note that by integrating by parts, to obtain 
  Using Hölder's and Poincaré's inequalities, we
get 
    
 ~~~~~~ 
 2 
 Z 
 u.uttdxds 
 < C2 ~ 
 X i=i 
 ~~~Zt 2 
 ~~~ 
 tl 
 1Vutk22 dt. (3.37) 
Iout(ti)12 Ilvu(ti)112 + C2 ~ Zt2 
 tl 
  By using Hölder's inequality once again, we have 
   
 
 
 ~~~Zt 2 
 ~~~ 
 tl 
 
 | 
 I 
 
 | 
 Vu.Vutdxds 
 
 | 
~~~~~~ 
 
 | 
 t2 
 I~ 
 tl 
 
 | 
 1V7k2 1Vuth ds (3.38) 
 
 | 
   | 
 
  
  
 Furthermore, by (3.35) and (3.16), we have 
   1 1 
 kVtt(ti)12 1Vt(ti)12 < C3 (C(Q))
2 F(t) sup E(s) 2 ; (3.39) 
 h<s<t2 
    
 where, C3 = 2 (1 (p
2--p 2)) 
 1 
 2 
 : 
 From (3.34) we have by Hölder's inequality 
   
 
 
 Zt 2 
 tl 
 
 | 
 1V7k2 1Vuth dt < 
 
 | 
 Zt 2 
 tl 
 
 | 
 E(s) 
 
 | 
 1 ~ 2p  ~~ 
 1 
 2 
 l p ~ 2 
 
 | 
 1 
 2 
 
 | 
 11VUt112 ds 
 
 | 
   | 
 
  
  
 
 
 < 1 2C3 sup E(s) ti<8<t2 
 
 | 
 1 
 2 
 
 | 
 Zt 2 
 tl 
 
 | 
 1Vuth ds, 
 
 | 
   | 
 
  
  
 which implies 
    
   
 1 
 1 
 2 
 1 krutk2 2 dt A 
 0 
 11Vut112 dt < @1dt 
 Zt2 
 tl 
 t1 
 1 
 A 
 t2 
 2 0 
 @ 
 Zt 2 
 tl 
  Then, 
 
 
 ~~~Zt 2 
 ~~~ 
 tl 
 
 | 
 Z 
 
 | 
u.uttdxds 
 
 | 
~~~~~~ 
 
 | 
 < 2C2~C3F(t) sup 
 h<s<t2 
 
 | 
 1 
 E(s) 2 + C!C2F(t)2. (3.41) 
 
 | 
   | 
 
  
  
-- 2 
 N/3C2 F(t). 
 
 
 C3 3C2 
 where C4 = 
 4 
 1 
 E(s) 2 (3.40) 
Zt 2 
 
 
 tl 
 
 | 
 1Vu12 1Vuth dt < C4F(t) sup 
 h<s<t2 
 
 | 
   | 
 
  
  
 . Therefore (3.37) , becomes 
  We then exploit Young's inequality to estimate 
   
   
 
 
  
g(s - r)Vu(t). [Vu(s) - Vu(t)1 drdxdt 
   
 (3.42) 
 
 
 < 8 
 
 | 
 Zt 2 
 h 
 
 | 
 t 
 I 
 0 
 
 | 
 g(s -
7-)11Vu1122c/rdt+
416. 
 
 | 
 , 
 I 
 h 
 
 | 
 (g o Vu) (t)dt, VS > 0. 
 
 | 
   | 
 
  
  
 Now, the third term in the right-hand side of (3.36), can be
estimated as follows 
   
 
 
 Zt 2 
 h 
 
 | 
 t 2 
 f 17/11m-2 ut.udxds 
 < I 
 ~ tl 
 
 | 
 I 
 
 | 
 lutlm-1 . lul dads. 
 
 | 
   | 
 
  
  
 By Holder's inequality, we find 
   
 
 
 Zt 2 
 h 
 
 | 
 I 
 
 | 
 lutrn-1 . lul dxds < 
 
 | 
 Zt 2 
 h 
 
 | 
 2 664 
 
 | 
 0 1 
 Z 
 @jutjm dx A ~ 
 
 | 
 m1  
 m 0 1 Z @ jujm dx A ~ 
 
 | 
 3 1 
 m 5 7 7 
 
 | 
 ds 
 
 | 
   | 
 
  
  
 kutk 
  
  
 = 
 Zt 2 
 h 
m~1 m ll'allm ds. 
   
 By Sobolev-Poincare's inequality, we have 
   
 
 
 , 
 I 
 ti 
 
 | 
 kutkm~1 m Mullm ds < C(S2) 
 
 | 
 Zt 2 
 ti 
 
 | 
 kutkm~1 m 1Vu12 ds, 
 
 | 
   | 
 
  
  
 
 
 for 2 < m ~ 2n n - 2 
 
 | 
 if n > 3, or 2 < m < 1 if n = 1, 2. 
 
 | 
   | 
 
  
  Using Holder's inequality, and since ti, t2 2 [t, t + 1] and
E(t) decreasing in time, we conclude from the last inequality, (3.16) and
(3.29) , that 
    
 
 
 , 
 I 
 ti. 
 
 | 
 Ilut1C-1 Mullm ds < C (Q) (l (p
2--p 2)) 
 
 | 
 1 
 2 
 
 | 
 Zt 2 
 ti. 
 
 | 
 Ilut1C-1 (J (u))I2 - ds 
 
 | 
   | 
 
  
  
 
 
<  C (Q) (l (p 2! 2)) 
 
 | 
 1 
 2 
 
 | 
 Zt 2 
 ti 
 
 | 
 1  
 Ilut1C-1 (E(u))2 ds 
 
 | 
   | 
 
  
  
 1 
 
<  C (Q) (l (p 2! 2)) 
 
 | 
 2 
 | 
   | 
 (E(u)) 
 | 
 1 
 | 
 
   | 
 sup 
h<8<t2 
 | 
 2 x 
 | 
 
| 
 0 Zt2 
@t1 
 | 
 1 kutkm m ds A 
 | 
 m-1 
 | 
 0 Zt 2 
@t1 
 | 
 1 
ds A 
 | 
 1 
M 
 | 
   | 
 
   | 
 (3.43) 
 | 
 
  
m-1 1 
| 
 ( 1a ) 
 | 
 M 
 | 
 C (Q) sup 
h<8<t2 
 | 
 (E(t)) 
 | 
 21 (  2p  ) l (p -- 2)) 
 | 
 2 
 | 
 F (t)m-1 
 | 
 
  
Then, taking into account (3.41) -- (3.43), estimate (3.36) takes
the form 
Zt 2 
ti. 
1 
I(t)dt < (2C! + 3C2 w) C3F(t) sup
E(s)2 + C:C2F(t)2 
4 ti <8<t2 
2 C3C (Q) sup (E(t)) 
1 
2 F(t)m-1 
1 
M 
a 
+ 
h<8<t2 
(3.44) 
| 
 +8 
 | 
 , 
I 
ti 
 | 
 t 
I 
0 
 | 
 g(t -- s) 11V u112 dsdt + (1 48 + 1) 
 | 
 , 
I 
h 
 | 
 (g 0 Vu) (t)dt. 
 | 
 
  
Moreover, from (3.4) and (3.10), we see that 
E(t) = 2 kutk2 
1 2 dt + J(t) 
  
t 
= 
2 2p 
1 Ilutg + (p 2) 1 -- I g(s)ds) 11V u112 
0 
(3.45) 
1p 2p-- 2 \ 
+  ) (g 0 Vu) (t) + 1 I (t). 
  By integrating (3.45) over [t1, t2] , we obtain 
   
 
 
 , 
 I 
 , 
 
 | 
 E(t)dt = 1 
 2 
 
 | 
 Zt 2 
 h 
 
 | 
 11utg dt + 132p2/ 
 
 | 
 , 
 I 
 , 
 
 | 
 0 
 @1 -- 
 
 | 
 t 
 I 
 0 
 
 | 
 1 g(s)ds A 11Vu1122 dt 
 
 | 
   | 
 
  
  
 
 
 + (p -- 2) 
 2p 
 
 | 
 Zt 2 
 , 
 
 | 
 (g o Vu)(t)dt + 1 
 P 
 
 | 
 Zt 2 
 , 
 
 | 
 I(t)dt, (3.46) 
 
 | 
   | 
 
  
  
 which implies by exploiting (3.32) 
   
 
 
 t 2 
 I 
 . 
 
 | 
 E(t)dt < c 1 (F (t))2 + 
 2 1 
 P 
 
 | 
 Zt 2 
 , 
 
 | 
 /(t)dt + (P -- 2) 
 2p 
 
 | 
 Zt 2 
 , 
 
 | 
 (g o Vu) (t)dt 
 
 | 
   | 
 
  
  
 (3.47) 
   
 
 
 + (p -- 2) 
 2p 
 
 | 
 Zt 2 
 h 
 
 | 
 0 
 @1 -- 
 
 | 
 t 
 I 
 0 
 
 | 
 1 
 g(s)ds A 11Vu1122 dt. 
 
 | 
   | 
 
  
  
 By using (3.11), Lemma 3.1.5, we see that 
  
 
 
  
) 
 g(s)ds 11V ug < 11(t). (3.48) 
71 
 Therefore, (3.47), takes the form 
   
 
 
 t 2 
 I 
  
 
 | 
 Q)( 
 E(t)dt < C 2 (F(t))2 + (P -- 2) 
 2p 
 
 | 
 , 
 I 
 , 
 
 | 
 (g o Vu) (t)dt 
 
 | 
   | 
 
  
  
 
 
 + (1 + p -- 2) .75, 2pii ) 
 
 | 
 Zt 2 
 , 
 
 | 
 I(t)dt. (3.49) 
 
 | 
   | 
 
  
  
 Again an integration of (3.14) over [s, t2] , s E [0, t2]
gives 
 
 
 E(s) = E(t2) + a 
 
 | 
 Zt 2 
 8 
 
 | 
 1 
 11ut(t)11: dr + 2 
 
 | 
 , 
 I 
 8 
 
 | 
 g(T) 11Vu(t)1122 dr 
 
 | 
   | 
 
  
  
   
 
 
 -- 
 
 | 
 1 
 2 
 
 | 
 Zt 2 
 8 
 
 | 
 (g o Vu) (t)dr + w 
 
 | 
 Zt 2 
 8 
 
 | 
 11Vut(t)1122 dr (3.50) 
 
 | 
   | 
 
  
  
  
 
 
 Zt 2 
 , 
 
 | 
 E(s)ds > 
 
 | 
 t 2 
 I 
  
 
 | 
 1 
 E(t2)ds > 2E(t2) · (3.51) 
 
 | 
   | 
 
  
  
1 
 ' 
 By using the fact that t2 -- ti > 2 we have 
  The fourth term in (3.44), can be handled as 
   
 
 
 t 
 I 
 0 
 
 | 
 g(t -- s) 1Vu122 ds =
1Vu122 
 
 | 
 t 
 I 
 0 
 
 | 
 g(t -- s)ds 
 
 | 
   | 
 
  
  
 (3.52) 
 < 2p (1 -- l) E (t). -- l (p -- 2) 
 Thus, 
   
 
 
 t2 
 I 
 t1 
 
 | 
 t 
 I 
 0 
 
 | 
 g(t -- s) 1Vuk22 dsdt < 2p
(1 ~ l) 
 l (p -- 2) 
 
 | 
 t2 
 I 
 t1 
 
 | 
 E(t)dt 
 
 | 
   | 
 
  
  
 p (1 ~ l) 
 ~ l (p -- 2)E(ti) 
 ~ p (1 ~ l) l (p -- 2)E(t). (3.53) 
 Hence, by (3.53) , we obtain from (3.44) 
  
 t2 
 I 
 t1 
1 
 I(t)dt < ( 20, + 3C2w) C3F(t) sup
E(s)2 + C!C2F(t)2 
 4 ti<8<t2 
    
 2 C3C (Q) sup (E(t)) 
 1 
 2 F(t)m-1 
 1 
 m 
 a 
 + 
 ti<8<t2 
 
 
  E(t) + ( 1  + 1) 
 +8 l (p -- 2) 48 
 
 | 
 t2 
 I 
 t1 
 
 | 
 (g o Vu) (t)dt. (3.54) 
 
 | 
   | 
 
  
  
  
 
 
 E(t) < 2 
 
 | 
 t2 
 I 
 t1 
 
 | 
 E(s)ds + a 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 1 
 Iut(t)1mm dr + 2 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 g(r) 1Vu(t)k22 dr 
 
 | 
   | 
 
  
  
 
 
 ~ 
 
 | 
 1 
 2 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 (g' o Vu) (t)dr + w 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 1Vut(t)k22 dr. (3.55) 
 
 | 
   | 
 
  
  
From (3.50) and (3.51) we have 
  Obviously, (3.49) and (3.55) give us 
 ( c (Q) ) 
 f /(t)dt E(t) < 2 (F(t))2 + (P 2 2 ) t
2 t 2 
 I (g ° Vu) (t)dt + (1 + p -- 2) 
 2 p 2pn 
 tl tl 
   
 
 
 +a 
 
 | 
 Zt 2 
 , 
 
 | 
 1 
 kut(t)km m dt + 
 2 
 
 | 
 , 
 I 
 , 
 
 | 
 g (t) 11V u(t)g dt -- 12 
 
 | 
 , 
 I 
 , 
 
 | 
 (g' o Vu) (t)dt 
 
 | 
   | 
 
  
  
   
 Zt 2 
 , 
 +w 
1Vut(t)k22 dt. 
 Consequently, plugging the estimate (3.54) into the above
estimate, we conclude 
   
 
 
 E(t) < C (Q) (F(t))2 + (P 2) 
 P 
 
 | 
 , 
 I 
 , 
 
 | 
 (g o Vu) (t)dt 
 
 | 
   | 
 
  
  
 .V3C2 1 
 +2 11 + P-- 2) [(2C: +
4 w) C3F(t) sup E(s) 2 + C!C2F(t)21 
 P 2pn ti<8<t2 
 + 
  (1 + P 2) am1 C3C (Q) sup
(E(t)) 2 F(t)m-1 p 2pi t 
 i 
 < 
 8 
  
   
<t2 
 +2 (1 p +  2pn p -- 2) [Sp1 (p -- 2) E (t) +
(4S + 1 ) I (g 0 V u) (t)dt)1 
 1  
  l 
t 
  
   
t2 
 (3.56) 
   
 
 
 +Fm(t) -- 1 
 2 
 
 | 
 , 
 I 
 , 
 
 | 
 (g' o Vu) (t)dt + 2 
 
 | 
 , 
 I 
 , 
 
 | 
 g (t) 11V u(t)g dt. 
 
 | 
   | 
 
  
  
 We also have, by the Poincaré's inequality 
 I I u(s) I I 2 < C I I vu(s)II2 
   1 
 
 
 < C (1 (p --p 2)) 
 
 | 
 2 
 
 | 
E(t) 
 
 | 
 1 
 2 
 
 | 
 , (3.57) 
 
 | 
   | 
 
  
  
 Choosing 8 small enough so that 
 1 -- 2 (1 + p -- 2) Sp (1
-- 1) 
 (3.58) 
 p 2pi 1 (p -- 2) > 0' 
  we deduce, from (3.56) that there exists K > 0 such that 
 E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2
F(t)m-1 + F(t)m] 
   
 
 
 + 
 
 | 
 1 
 2 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 g(s) 1Vu(s)k22 ds -- 1 
 2 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 (g' o Vu) (s)ds 
 
 | 
   | 
 
  
  
 (3.59) 
   
 
 
 #177;[(p ;2) #177; 2 (
15. #177; 0 (p i_ #177; p
2-13712)1 
 
 | 
 t + 1 
 I 
 t 
 
 | 
 (g o Vu) (s)ds 
 
 | 
   | 
 
  
  
  
 , 
 I 
 , 
Using (G2) again we can write 
 
 
 , 
 I 
 , 
 
 | 
 (g o Vu) (t)dt < -- 
 
 | 
   | 
 
  
 (g' 0 Vu) (t)dt, > 0. 
  Then, we obtain, from (3.59), 
 1 1 , 
 E(t) < K [ F(t)2 + E(t) 2 F(t) +
E(t) 2 F(t)m-1 + F(t)m] 
  
 (3.60) 
    
 g(s)11Vu(s)gds -- ( 6+ 2) 
 1 
 + 2 
 t + 1 
 I 
 t 
 t + 1 
 I 
 t 
 (g' o Vu) (s)ds. 
 where 6. = [(p ;2) + 2 (.731 #177;
p 2p--n) ( 45+ 1 )J 
 An appropriate use of Young's inequality in (3.60), we can find
K1 > 0 such that 
 E(t) < K1 [F(t)2 + F(t)2(m-1) +
F(t)m] (3.61) 
    
 g(s)11Vu(s)gds -- ( 6+ 2) 
 3 
 (g' o Vu) (s)ds 5 , 
 t + 1 
 I 
 t 
 t + 1 
 I 
 t 
 [ 
 1 
 2 
 for K1 a positive constant. 
  Using (G2) again to get 
 E(t) < K1 [F(t)2 + F(t)2(m-1) +
F(t)m] 
    
 + [ (1 + 2 f 
 g (s) 11V u(s) g ds -- (61 + 2) 
 t + 1 
 I 
 t 
 t+ 1 
 I 
 t 
 (g' o Vu) (s)ds 
 < K1 [F(t)2 + F(t)2(m-1) +
F(t)m] 
 (3.62) 
 t + 1 t + 1 
 + (1 + gi) 
 [2 
 1 I 
 I g(s) 11V u(s)112 2 2 ds -- (g' o Vu)
(s)ds 
 t t 
 At this end we distinguish two cases: 
 Case 1.  m = 2. In this case we use (3.28) and (3.62), we
can find K2 > 0 such that 
 E(t) < K1 F(t)2 
 t+ 1 t + 1 
 + (1 + gi) 
 [2 
 I g(s) 11V u(s)112 ds -- 2 II (g' o Vu)
(s)ds 
 t 1 
 t 
 < K2 [E(t) -- E(t + 1)] . (3.63) 
 Since E(t) is nonincreasing and nonnegative function, an
application of Lemma 3.2.1 yields 
  E(t) < K2 [E(t) -- E(t + 1)] , t > 0, (3.64) 
 which implies that 
 E(t) < E (0) exp (--A [t -- 1]1 , on [0, oo) , (3.65) 
 where A = ln 
 K2 -- 1 
 (  K2  
 Case 2. m > 2. In this case we, again use (3.28) and
(3.62) to arrive at 
 2 
   
   
 m 
 . (3.66) 
t + 1 t+ 1t t 
  
   
F(t)2 = (E(t) -- E(t + 1)) -- 2 1 I g(s) 11V u(s) g
ds + 21 I (g' o Vu) (s)ds 
   
   
 m 
 2 < 2 
We then use the algebraic inequality 
 (a + b) 
 m ( m m 
 2 a2 + b2), m > 2. (3.67) 
  To infer from (3.62), and by using (3.67), that 
 
 
 [E(t)] 
 
 | 
 m [1 + F (t)2(m_2) + F (t)m_2] 
 2 < K3 
 
 | 
 m 
 2 F(t)m 
 
 | 
   | 
 
  
  
 
 
   | 
 m 
 2 (1 + 21) 
 
 | 
 m 
 
 | 
 2 
 4 
 
 | 
 ft + 1 
 1 g(s) MVu(s)M2 2 ds _ 1 
 2 2 
 t 
 
 | 
 Zt + 1 
 t 
 
 | 
 3 
 (g' o Vu) (s)ds 5 
 
 | 
 m 2 
 
 | 
  
 +2 
 
 | 
 
   | 
   | 
   | 
 
  
  
 [1 + F (t)2(m_2) + F
(t)m_2]m 
 < K3 2 x [E(t) - E(t + 1)] 
  
 (3.68) 
  
 
 
   | 
 m 
 2 (1 + 21) 
 
 | 
 m 
 
 | 
 2 
 4 
 
 | 
 ft + 1 
 1 g(s) MVu(s)M2 2 ds _ 1 
 2 2 
 t 
 
 | 
 Zt + 1 
 t 
 
 | 
 3 
 (g' o Vu) (s)ds 5 
 
 | 
 m 2 
 
 | 
  
 +2 
 
 | 
 
   | 
   | 
   | 
 
  
  
 m 
 
 
 where K3 = 2 
 
 | 
 2 K1. We use (3.28) to obtain 
 
 | 
   | 
 
  
  
   
 
 
 0 @ 
 
 | 
 1 
 2 
 
 | 
 Zt + 1 
 t 
 
 | 
 g(s) VuM2 2 ds - 1 
 2 
 
 | 
 Zt + 1 
 t 
 
 | 
 1 (g' o Vu) (s)ds A 
 
 | 
m 2 
 
 | 
   | 
 
  
  
 m 
 
 
 < (E(t) - E(t + 1)) 
 A combination of (3.68), (3.69) yields 
 
 | 
 2 (3.69) 
 
 | 
   | 
 
  
  
 
 
 [E(t)] 
 
 | 
 m 2 < K3 [1 + F(t)2(m_2) +
F(t)m_2] 
 
 | 
 m 
 2 x (E(t) - E(t + 1)) 
 
 | 
   | 
 
  
  
   
 
 
 +2 
 
 | 
 m 
 2 (1 + 21) 
 
 | 
 m 
 2 [E(t) -- E(t + 1)] 
 
 | 
 m 2 -1 [E(t) - E(t + 1)] 
 
 | 
   | 
 
  
  
 [ ] 
 m m m 
 < K3 [1 + F (t)2(m_2) + F (t)m_2]m 2 +
2 2 ~1 
 2 (1 + 21) 2 [E(t) - E(t + 1)] x 
 [E(t) - E(t + 1)] (3.70) 
 By using (3.62), the estimate (3.70) takes the form 
 
 
 [E(t)] 
 
 | 
 m 
 2 < 
 
 | 
 { m m m m 
 K32m [1 + E(0)(m_2) + (E(0)) 2 ~1i 2 _1} 
 + 2 2 (1 + 21) 2 (E(0)) ~ 
 
 | 
   | 
 
  
  
 (E(t) - E(t + 1)) 
 < K0 (E(t) - E(t + 1)). (3.71) 
  Again, using Lemma 3.2.1, we conclude 
  E(t) < [E(0)_r + K0r [t --
11+18 , (3.72) 
  
 Tn 
 with r = 
 2 
 2 
 1 > 0, s =   and K0 is some given positive constant. 
 2 -- n-i 
  This completes the proof. 
  
 
 |