3.2 Decay of Solutions
We can now state the asymptotic behavior of the solution of
(P).
Theorem 3.2.1 Suppose that (G1) , (G2) and (2.3) hold. Assume
further that u0 2 W and ui 2 110 (Q) satisfying (3.12) .
Then the global solution satisfies
E(t) < E (0) exp (--At) , Vt > 0 if m = 2, (3.25)
or
E(t) < (E(0)' + Kort)3 , Vt > 0 if m
> 2, (3.26)
where A and K0 are constants independent of t, r = m 1 and s =
2
2 2 -- m.
The following Lemma will play a decisive role in the proof of our
result. The proof of this lemma was given in Nakao [34].
Lemma 3.2.1 ( [37]) Let cp(t) be a nonincreasing and nonnegative
function defined on [0, T] , T > 1, satisfying
cpl#177;r(t) < k( (cp (t) -- cp (t + 1)) , t 2 [0,
T] ,
for ko > 1 and r > 0. Then we have, for each t 2 [0, T]
,
cp (t) < cp (0) exp (--k [t -- 1]+) , r = 0
c° (t) ~{c (0)--r + k0r [t --
1]+1
{
where [t -- 1]+ = max ft -- 1,0} , and k = ln (
k0 k0 1 1) .
Proof of Theorem 3.2.1.
Multiplying the first equation in (P), by ut and integrate over
ft to obtain d dt E (t) + w 11out 122 + a Mud 2 : = (g' 2
Vu) (t) -- g (t) 11V u(t)1122
Then, integrate the last equality over [t, t + 1] to get
t+1 t+1
E(t 1) -- E(t) + w kbut122 ds + a Mud:
ds
t t
=
t+1
t
1 (g' 0 V u) (s)ds --
2
t+1
2g(s) 1Vu(t) 1 2ds
t
Therefore,
1
E(t) -- E(t 1) = fim(t) -- 2
1
(g' o VU) (s)ds +
2
t+1
g(t) 1Vu(t)k22 ds, (3.28)
t
t+1
t
where
t+1 t+1
Fm(t) = a Mud: ds w
1Vutk22 ds (3.29)
t t
Using Poincaré's inequality to find
t+1 t+1
Iutk22 ds < C (12) Mutem ds
(3.30)
t t
Exploiting Holder's inequality, we obtain
0 1
Zt + 1
kutk2 m ds ~ @ ds A
t
m-2
m 0
@
1
2
~kutk2 m A
m
t+1
t
t+1
t
2 m
ds
0
~ @
|
t+1
t
|
1
2
~kutk2 m A
m
|
2 m
|
ds. (3.31)
|
Combining (3.29), (3.30), and (3.31), we obtain, for a constant
C1, depending on ~
t+1
Iutk22 ds < F2(t), C1 > 0.
(3.32)
t
~ ~
By applying the mean value theorem, ( Theorem 1.3.3. in
chapter1), we get for some t1 2 t; t + 1 ;
4
~ ~
t + 3
t2 2 4; t + 1
Ilut(ti)112 < 2c (n)
|
1
2 F(t), = 1, 2. (3.33)
|
Hence, by (G2) and since
t+1
1Vut122 ds < C2F (t)2, C2
> 0 (3.34)
t
1 3
, there exist t1 2 [t' 4 t + 1 , 4 t2 2 [t + t + 11 such that
11Vut(ti)1122 < 4C (Q)F(t)2,
i = 1, 2. (3.35)
Zt 2
tl
Next, we multiply the first equation in (P) by u and integrate
over Q x [t1, t2] to obtain
2 0 1 3
Zt
4 @1 ~ g(~)d~ A kru(t)k2 2 ds ~
b kukp 5 ds
0
p
= ~
|
Zt 2
tl
|
I
|
u.uttdxds -- w
|
Zt 2
tl
|
I
|
Vu.Vutdxds -- a
|
Zt 2
tl
|
Z
|
u: jutjm-2utdxds
|
t2
+f
tl
|
Zs
0
|
g(s -T) I
|
Vu(s). [Vu(T) -- Vu(s)] dxdrds.
|
Obviously,
t 2
Z
tl
|
I(s)ds = --
|
Zt 2
tl
|
Z
|
u.uttdxds -- w
|
Zt2
tl
|
Z
|
Vu.Vutdxds -- a
|
Zt 2
tl
|
Z
|
u.lutr-2 utdxds
|
t 2
+ f
tl
|
Zs
0
|
g(s -T) I
|
Vu(s). [Vu(T) -- Vu(s)] dxdrds
|
~~~~~~
=
~~~~~~
u.uttdxds
~~~Zt2
~~~
tl
I
2 3
Z Zt 2 Z
4 utudx 5 ~ utdxds
t2
~ t1 t1 ~
=
|
~~~~~~
|
Z
|
ut(t2)u(t2)dx -- I ut(ti)u(ti)dx --
|
Zt 2
tl
|
kutk2 2ds
|
~~~~~~
|
;
|
t 2
+ f (g o Vu) (s)ds. (3.36)
tl
Note that by integrating by parts, to obtain
Using Hölder's and Poincaré's inequalities, we
get
~~~~~~
2
Z
u.uttdxds
< C2 ~
X i=i
~~~Zt 2
~~~
tl
1Vutk22 dt. (3.37)
Iout(ti)12 Ilvu(ti)112 + C2 ~ Zt2
tl
By using Hölder's inequality once again, we have
~~~Zt 2
~~~
tl
|
I
|
Vu.Vutdxds
|
~~~~~~
|
t2
I~
tl
|
1V7k2 1Vuth ds (3.38)
|
|
Furthermore, by (3.35) and (3.16), we have
1 1
kVtt(ti)12 1Vt(ti)12 < C3 (C(Q))
2 F(t) sup E(s) 2 ; (3.39)
h<s<t2
where, C3 = 2 (1 (p
2--p 2))
1
2
:
From (3.34) we have by Hölder's inequality
Zt 2
tl
|
1V7k2 1Vuth dt <
|
Zt 2
tl
|
E(s)
|
1 ~ 2p ~~
1
2
l p ~ 2
|
1
2
|
11VUt112 ds
|
|
< 1 2C3 sup E(s) ti<8<t2
|
1
2
|
Zt 2
tl
|
1Vuth ds,
|
|
which implies
1
1
2
1 krutk2 2 dt A
0
11Vut112 dt < @1dt
Zt2
tl
t1
1
A
t2
2 0
@
Zt 2
tl
Then,
~~~Zt 2
~~~
tl
|
Z
|
u.uttdxds
|
~~~~~~
|
< 2C2~C3F(t) sup
h<s<t2
|
1
E(s) 2 + C!C2F(t)2. (3.41)
|
|
-- 2
N/3C2 F(t).
C3 3C2
where C4 =
4
1
E(s) 2 (3.40)
Zt 2
tl
|
1Vu12 1Vuth dt < C4F(t) sup
h<s<t2
|
|
. Therefore (3.37) , becomes
We then exploit Young's inequality to estimate
g(s - r)Vu(t). [Vu(s) - Vu(t)1 drdxdt
(3.42)
< 8
|
Zt 2
h
|
t
I
0
|
g(s -
7-)11Vu1122c/rdt+
416.
|
,
I
h
|
(g o Vu) (t)dt, VS > 0.
|
|
Now, the third term in the right-hand side of (3.36), can be
estimated as follows
Zt 2
h
|
t 2
f 17/11m-2 ut.udxds
< I
~ tl
|
I
|
lutlm-1 . lul dads.
|
|
By Holder's inequality, we find
Zt 2
h
|
I
|
lutrn-1 . lul dxds <
|
Zt 2
h
|
2 664
|
0 1
Z
@jutjm dx A ~
|
m1
m 0 1 Z @ jujm dx A ~
|
3 1
m 5 7 7
|
ds
|
|
kutk
=
Zt 2
h
m~1 m ll'allm ds.
By Sobolev-Poincare's inequality, we have
,
I
ti
|
kutkm~1 m Mullm ds < C(S2)
|
Zt 2
ti
|
kutkm~1 m 1Vu12 ds,
|
|
for 2 < m ~ 2n n - 2
|
if n > 3, or 2 < m < 1 if n = 1, 2.
|
|
Using Holder's inequality, and since ti, t2 2 [t, t + 1] and
E(t) decreasing in time, we conclude from the last inequality, (3.16) and
(3.29) , that
,
I
ti.
|
Ilut1C-1 Mullm ds < C (Q) (l (p
2--p 2))
|
1
2
|
Zt 2
ti.
|
Ilut1C-1 (J (u))I2 - ds
|
|
< C (Q) (l (p 2! 2))
|
1
2
|
Zt 2
ti
|
1
Ilut1C-1 (E(u))2 ds
|
|
1
< C (Q) (l (p 2! 2))
|
2
|
|
(E(u))
|
1
|
|
sup
h<8<t2
|
2 x
|
0 Zt2
@t1
|
1 kutkm m ds A
|
m-1
|
0 Zt 2
@t1
|
1
ds A
|
1
M
|
|
|
(3.43)
|
m-1 1
( 1a )
|
M
|
C (Q) sup
h<8<t2
|
(E(t))
|
21 ( 2p ) l (p -- 2))
|
2
|
F (t)m-1
|
Then, taking into account (3.41) -- (3.43), estimate (3.36) takes
the form
Zt 2
ti.
1
I(t)dt < (2C! + 3C2 w) C3F(t) sup
E(s)2 + C:C2F(t)2
4 ti <8<t2
2 C3C (Q) sup (E(t))
1
2 F(t)m-1
1
M
a
+
h<8<t2
(3.44)
+8
|
,
I
ti
|
t
I
0
|
g(t -- s) 11V u112 dsdt + (1 48 + 1)
|
,
I
h
|
(g 0 Vu) (t)dt.
|
Moreover, from (3.4) and (3.10), we see that
E(t) = 2 kutk2
1 2 dt + J(t)
t
=
2 2p
1 Ilutg + (p 2) 1 -- I g(s)ds) 11V u112
0
(3.45)
1p 2p-- 2 \
+ ) (g 0 Vu) (t) + 1 I (t).
By integrating (3.45) over [t1, t2] , we obtain
,
I
,
|
E(t)dt = 1
2
|
Zt 2
h
|
11utg dt + 132p2/
|
,
I
,
|
0
@1 --
|
t
I
0
|
1 g(s)ds A 11Vu1122 dt
|
|
+ (p -- 2)
2p
|
Zt 2
,
|
(g o Vu)(t)dt + 1
P
|
Zt 2
,
|
I(t)dt, (3.46)
|
|
which implies by exploiting (3.32)
t 2
I
.
|
E(t)dt < c 1 (F (t))2 +
2 1
P
|
Zt 2
,
|
/(t)dt + (P -- 2)
2p
|
Zt 2
,
|
(g o Vu) (t)dt
|
|
(3.47)
+ (p -- 2)
2p
|
Zt 2
h
|
0
@1 --
|
t
I
0
|
1
g(s)ds A 11Vu1122 dt.
|
|
By using (3.11), Lemma 3.1.5, we see that
)
g(s)ds 11V ug < 11(t). (3.48)
71
Therefore, (3.47), takes the form
t 2
I
|
Q)(
E(t)dt < C 2 (F(t))2 + (P -- 2)
2p
|
,
I
,
|
(g o Vu) (t)dt
|
|
+ (1 + p -- 2) .75, 2pii )
|
Zt 2
,
|
I(t)dt. (3.49)
|
|
Again an integration of (3.14) over [s, t2] , s E [0, t2]
gives
E(s) = E(t2) + a
|
Zt 2
8
|
1
11ut(t)11: dr + 2
|
,
I
8
|
g(T) 11Vu(t)1122 dr
|
|
--
|
1
2
|
Zt 2
8
|
(g o Vu) (t)dr + w
|
Zt 2
8
|
11Vut(t)1122 dr (3.50)
|
|
Zt 2
,
|
E(s)ds >
|
t 2
I
|
1
E(t2)ds > 2E(t2) · (3.51)
|
|
1
'
By using the fact that t2 -- ti > 2 we have
The fourth term in (3.44), can be handled as
t
I
0
|
g(t -- s) 1Vu122 ds =
1Vu122
|
t
I
0
|
g(t -- s)ds
|
|
(3.52)
< 2p (1 -- l) E (t). -- l (p -- 2)
Thus,
t2
I
t1
|
t
I
0
|
g(t -- s) 1Vuk22 dsdt < 2p
(1 ~ l)
l (p -- 2)
|
t2
I
t1
|
E(t)dt
|
|
p (1 ~ l)
~ l (p -- 2)E(ti)
~ p (1 ~ l) l (p -- 2)E(t). (3.53)
Hence, by (3.53) , we obtain from (3.44)
t2
I
t1
1
I(t)dt < ( 20, + 3C2w) C3F(t) sup
E(s)2 + C!C2F(t)2
4 ti<8<t2
2 C3C (Q) sup (E(t))
1
2 F(t)m-1
1
m
a
+
ti<8<t2
E(t) + ( 1 + 1)
+8 l (p -- 2) 48
|
t2
I
t1
|
(g o Vu) (t)dt. (3.54)
|
|
E(t) < 2
|
t2
I
t1
|
E(s)ds + a
|
t + 1
I
t
|
1
Iut(t)1mm dr + 2
|
t + 1
I
t
|
g(r) 1Vu(t)k22 dr
|
|
~
|
1
2
|
t + 1
I
t
|
(g' o Vu) (t)dr + w
|
t + 1
I
t
|
1Vut(t)k22 dr. (3.55)
|
|
From (3.50) and (3.51) we have
Obviously, (3.49) and (3.55) give us
( c (Q) )
f /(t)dt E(t) < 2 (F(t))2 + (P 2 2 ) t
2 t 2
I (g ° Vu) (t)dt + (1 + p -- 2)
2 p 2pn
tl tl
+a
|
Zt 2
,
|
1
kut(t)km m dt +
2
|
,
I
,
|
g (t) 11V u(t)g dt -- 12
|
,
I
,
|
(g' o Vu) (t)dt
|
|
Zt 2
,
+w
1Vut(t)k22 dt.
Consequently, plugging the estimate (3.54) into the above
estimate, we conclude
E(t) < C (Q) (F(t))2 + (P 2)
P
|
,
I
,
|
(g o Vu) (t)dt
|
|
.V3C2 1
+2 11 + P-- 2) [(2C: +
4 w) C3F(t) sup E(s) 2 + C!C2F(t)21
P 2pn ti<8<t2
+
(1 + P 2) am1 C3C (Q) sup
(E(t)) 2 F(t)m-1 p 2pi t
i
<
8
<t2
+2 (1 p + 2pn p -- 2) [Sp1 (p -- 2) E (t) +
(4S + 1 ) I (g 0 V u) (t)dt)1
1
l
t
t2
(3.56)
+Fm(t) -- 1
2
|
,
I
,
|
(g' o Vu) (t)dt + 2
|
,
I
,
|
g (t) 11V u(t)g dt.
|
|
We also have, by the Poincaré's inequality
I I u(s) I I 2 < C I I vu(s)II2
1
< C (1 (p --p 2))
|
2
|
E(t)
|
1
2
|
, (3.57)
|
|
Choosing 8 small enough so that
1 -- 2 (1 + p -- 2) Sp (1
-- 1)
(3.58)
p 2pi 1 (p -- 2) > 0'
we deduce, from (3.56) that there exists K > 0 such that
E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2
F(t)m-1 + F(t)m]
+
|
1
2
|
t + 1
I
t
|
g(s) 1Vu(s)k22 ds -- 1
2
|
t + 1
I
t
|
(g' o Vu) (s)ds
|
|
(3.59)
#177;[(p ;2) #177; 2 (
15. #177; 0 (p i_ #177; p
2-13712)1
|
t + 1
I
t
|
(g o Vu) (s)ds
|
|
,
I
,
Using (G2) again we can write
,
I
,
|
(g o Vu) (t)dt < --
|
|
(g' 0 Vu) (t)dt, > 0.
Then, we obtain, from (3.59),
1 1 ,
E(t) < K [ F(t)2 + E(t) 2 F(t) +
E(t) 2 F(t)m-1 + F(t)m]
(3.60)
g(s)11Vu(s)gds -- ( 6+ 2)
1
+ 2
t + 1
I
t
t + 1
I
t
(g' o Vu) (s)ds.
where 6. = [(p ;2) + 2 (.731 #177;
p 2p--n) ( 45+ 1 )J
An appropriate use of Young's inequality in (3.60), we can find
K1 > 0 such that
E(t) < K1 [F(t)2 + F(t)2(m-1) +
F(t)m] (3.61)
g(s)11Vu(s)gds -- ( 6+ 2)
3
(g' o Vu) (s)ds 5 ,
t + 1
I
t
t + 1
I
t
[
1
2
for K1 a positive constant.
Using (G2) again to get
E(t) < K1 [F(t)2 + F(t)2(m-1) +
F(t)m]
+ [ (1 + 2 f
g (s) 11V u(s) g ds -- (61 + 2)
t + 1
I
t
t+ 1
I
t
(g' o Vu) (s)ds
< K1 [F(t)2 + F(t)2(m-1) +
F(t)m]
(3.62)
t + 1 t + 1
+ (1 + gi)
[2
1 I
I g(s) 11V u(s)112 2 2 ds -- (g' o Vu)
(s)ds
t t
At this end we distinguish two cases:
Case 1. m = 2. In this case we use (3.28) and (3.62), we
can find K2 > 0 such that
E(t) < K1 F(t)2
t+ 1 t + 1
+ (1 + gi)
[2
I g(s) 11V u(s)112 ds -- 2 II (g' o Vu)
(s)ds
t 1
t
< K2 [E(t) -- E(t + 1)] . (3.63)
Since E(t) is nonincreasing and nonnegative function, an
application of Lemma 3.2.1 yields
E(t) < K2 [E(t) -- E(t + 1)] , t > 0, (3.64)
which implies that
E(t) < E (0) exp (--A [t -- 1]1 , on [0, oo) , (3.65)
where A = ln
K2 -- 1
( K2
Case 2. m > 2. In this case we, again use (3.28) and
(3.62) to arrive at
2
m
. (3.66)
t + 1 t+ 1t t
F(t)2 = (E(t) -- E(t + 1)) -- 2 1 I g(s) 11V u(s) g
ds + 21 I (g' o Vu) (s)ds
m
2 < 2
We then use the algebraic inequality
(a + b)
m ( m m
2 a2 + b2), m > 2. (3.67)
To infer from (3.62), and by using (3.67), that
[E(t)]
|
m [1 + F (t)2(m_2) + F (t)m_2]
2 < K3
|
m
2 F(t)m
|
|
|
m
2 (1 + 21)
|
m
|
2
4
|
ft + 1
1 g(s) MVu(s)M2 2 ds _ 1
2 2
t
|
Zt + 1
t
|
3
(g' o Vu) (s)ds 5
|
m 2
|
+2
|
|
|
|
[1 + F (t)2(m_2) + F
(t)m_2]m
< K3 2 x [E(t) - E(t + 1)]
(3.68)
|
m
2 (1 + 21)
|
m
|
2
4
|
ft + 1
1 g(s) MVu(s)M2 2 ds _ 1
2 2
t
|
Zt + 1
t
|
3
(g' o Vu) (s)ds 5
|
m 2
|
+2
|
|
|
|
m
where K3 = 2
|
2 K1. We use (3.28) to obtain
|
|
0 @
|
1
2
|
Zt + 1
t
|
g(s) VuM2 2 ds - 1
2
|
Zt + 1
t
|
1 (g' o Vu) (s)ds A
|
m 2
|
|
m
< (E(t) - E(t + 1))
A combination of (3.68), (3.69) yields
|
2 (3.69)
|
|
[E(t)]
|
m 2 < K3 [1 + F(t)2(m_2) +
F(t)m_2]
|
m
2 x (E(t) - E(t + 1))
|
|
+2
|
m
2 (1 + 21)
|
m
2 [E(t) -- E(t + 1)]
|
m 2 -1 [E(t) - E(t + 1)]
|
|
[ ]
m m m
< K3 [1 + F (t)2(m_2) + F (t)m_2]m 2 +
2 2 ~1
2 (1 + 21) 2 [E(t) - E(t + 1)] x
[E(t) - E(t + 1)] (3.70)
By using (3.62), the estimate (3.70) takes the form
[E(t)]
|
m
2 <
|
{ m m m m
K32m [1 + E(0)(m_2) + (E(0)) 2 ~1i 2 _1}
+ 2 2 (1 + 21) 2 (E(0)) ~
|
|
(E(t) - E(t + 1))
< K0 (E(t) - E(t + 1)). (3.71)
Again, using Lemma 3.2.1, we conclude
E(t) < [E(0)_r + K0r [t --
11+18 , (3.72)
Tn
with r =
2
2
1 > 0, s = and K0 is some given positive constant.
2 -- n-i
This completes the proof.
|