WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

3.2 Decay of Solutions

We can now state the asymptotic behavior of the solution of (P).

Theorem 3.2.1 Suppose that (G1) , (G2) and (2.3) hold. Assume further that u0 2 W and ui 2 110 (Q) satisfying (3.12) . Then the global solution satisfies

E(t) < E (0) exp (--At) , Vt > 0 if m = 2, (3.25)

or

E(t) < (E(0)' + Kort)3 , Vt > 0 if m > 2, (3.26)

where A and K0 are constants independent of t, r = m 1 and s =

2

2 2 -- m.

The following Lemma will play a decisive role in the proof of our result. The proof of this lemma was given in Nakao [34].

Lemma 3.2.1 ( [37]) Let cp(t) be a nonincreasing and nonnegative function defined on [0, T] , T > 1, satisfying

cpl#177;r(t) < k( (cp (t) -- cp (t + 1)) , t 2 [0, T] ,

for ko > 1 and r > 0. Then we have, for each t 2 [0, T] ,

cp (t) < cp (0) exp (--k [t -- 1]+) , r = 0

c° (t) ~{c (0)--r + k0r [t -- 1]+1

{

_1

r ,r > 0

,

(3.27)

where [t -- 1]+ = max ft -- 1,0} , and k = ln ( k0 k0 1 1) .

Proof of Theorem 3.2.1.

Multiplying the first equation in (P), by ut and integrate over ft to obtain d dt E (t) + w 11out 122 + a Mud 2 : = (g' 2

Vu) (t) -- g (t) 11V u(t)1122

Then, integrate the last equality over [t, t + 1] to get

t+1 t+1

E(t 1) -- E(t) + w kbut122 ds + a Mud: ds

t t

=

t+1

t

1 (g' 0 V u) (s)ds --

2

t+1

2g(s) 1Vu(t) 1 2ds

t

Therefore,

1

E(t) -- E(t 1) = fim(t) -- 2

1

(g' o VU) (s)ds +

2

t+1

g(t) 1Vu(t)k22 ds, (3.28)

t

t+1

t

where

t+1 t+1

Fm(t) = a Mud: ds w 1Vutk22 ds (3.29)

t t

Using Poincaré's inequality to find

t+1 t+1

Iutk22 ds < C (12) Mutem ds (3.30)

t t

Exploiting Holder's inequality, we obtain

0 1

Zt + 1

kutk2 m ds ~ @ ds A

t

m-2

m 0

@

1

2

~kutk2 m A

m

t+1

t

t+1

t

2
m

ds

0

~ @

t+1

t

1

2

~kutk2 m A

m

2
m

ds. (3.31)

Combining (3.29), (3.30), and (3.31), we obtain, for a constant C1, depending on ~

t+1

Iutk22 ds < F2(t), C1 > 0. (3.32)

t

~ ~

By applying the mean value theorem, ( Theorem 1.3.3. in chapter1), we get for some t1 2 t; t + 1 ;

4

~ ~

t + 3

t2 2 4; t + 1

Ilut(ti)112 < 2c (n)

1

2 F(t), = 1, 2. (3.33)

Hence, by (G2) and since

t+1

1Vut122 ds < C2F (t)2, C2 > 0 (3.34)

t

1 3

, there exist t1 2 [t' 4 t + 1 , 4 t2 2 [t + t + 11 such that

11Vut(ti)1122 < 4C (Q)F(t)2, i = 1, 2. (3.35)

Zt 2

tl

Next, we multiply the first equation in (P) by u and integrate over Q x [t1, t2] to obtain

2 0 1 3

Zt

4 @1 ~ g(~)d~ A kru(t)k2 2 ds ~ b kukp 5 ds

0

p

= ~

Zt 2

tl

I

u.uttdxds -- w

Zt 2

tl

I

Vu.Vutdxds -- a

Zt 2

tl

Z

u: jutjm-2utdxds

t2

+f

tl

Zs

0

g(s -T) I

Vu(s). [Vu(T) -- Vu(s)] dxdrds.

Obviously,

t 2

Z

tl

I(s)ds = --

Zt 2

tl

Z

u.uttdxds -- w

Zt2

tl

Z

Vu.Vutdxds -- a

Zt 2

tl

Z

u.lutr-2 utdxds

t 2

+ f

tl

Zs

0

g(s -T) I

Vu(s). [Vu(T) -- Vu(s)] dxdrds

~~~~~~

=

~~~~~~

u.uttdxds

~~~Zt2

~~~

tl

I

2 3

Z Zt 2 Z

4 utudx 5 ~ utdxds

t2

~ t1 t1 ~

=

~~~~~~

Z

ut(t2)u(t2)dx -- I ut(ti)u(ti)dx --

Zt 2

tl

kutk2 2ds

~~~~~~

;

t 2

+ f (g o Vu) (s)ds. (3.36)

tl

Note that by integrating by parts, to obtain

Using Hölder's and Poincaré's inequalities, we get

~~~~~~

2

Z

u.uttdxds

< C2 ~

X
i=i

~~~Zt 2

~~~

tl

1Vutk22 dt. (3.37)

Iout(ti)12 Ilvu(ti)112 + C2 ~ Zt2

tl

By using Hölder's inequality once again, we have

~~~Zt 2

~~~

tl

I

Vu.Vutdxds

~~~~~~

t2

I~

tl

1V7k2 1Vuth ds (3.38)

 

Furthermore, by (3.35) and (3.16), we have

1 1

kVtt(ti)12 1Vt(ti)12 < C3 (C(Q)) 2 F(t) sup E(s) 2 ; (3.39)

h<s<t2

where, C3 = 2 (1 (p 2--p 2))

1

2

:

From (3.34) we have by Hölder's inequality

Zt 2

tl

1V7k2 1Vuth dt <

Zt 2

tl

E(s)

1 ~ 2p ~~

1

2

l p ~ 2

1

2

11VUt112 ds

 

< 1 2C3 sup E(s) ti<8<t2

1

2

Zt 2

tl

1Vuth ds,

 

which implies

1

1

2

1 krutk2 2 dt A

0

11Vut112 dt < @1dt

Zt2

tl

t1

1

A

t2

2 0

@

Zt 2

tl

Then,

~~~Zt 2

~~~

tl

Z

u.uttdxds

~~~~~~

< 2C2~C3F(t) sup

h<s<t2

1

E(s) 2 + C!C2F(t)2. (3.41)

 

-- 2

N/3C2 F(t).

C3 3C2

where C4 =

4

1

E(s) 2 (3.40)

Zt 2

tl

1Vu12 1Vuth dt < C4F(t) sup

h<s<t2

 

. Therefore (3.37) , becomes

We then exploit Young's inequality to estimate

Zt 2

,

I i

st 0

 

g(s - r)Vu(t). [Vu(s) - Vu(t)1 drdxdt

(3.42)

< 8

Zt 2

h

t

I

0

g(s - 7-)11Vu1122c/rdt+ 416.

,

I

h

(g o Vu) (t)dt, VS > 0.

 

Now, the third term in the right-hand side of (3.36), can be estimated as follows

Zt 2

h

t 2

f 17/11m-2 ut.udxds

< I

~ tl

I

lutlm-1 . lul dads.

 

By Holder's inequality, we find

Zt 2

h

I

lutrn-1 . lul dxds <

Zt 2

h

2
664

0 1

Z

@jutjm dx A ~

m1

m 0 1
Z @ jujm dx A ~

3 1

m 5 7 7

ds

 

kutk

=

Zt 2

h

m~1 m ll'allm ds.

By Sobolev-Poincare's inequality, we have

,

I

ti

kutkm~1 m Mullm ds < C(S2)

Zt 2

ti

kutkm~1 m 1Vu12 ds,

 

for 2 < m ~ 2n n - 2

if n > 3, or 2 < m < 1 if n = 1, 2.

 

Using Holder's inequality, and since ti, t2 2 [t, t + 1] and E(t) decreasing in time, we conclude from the last inequality, (3.16) and (3.29) , that

,

I

ti.

Ilut1C-1 Mullm ds < C (Q) (l (p 2--p 2))

1

2

Zt 2

ti.

Ilut1C-1 (J (u))I2 - ds

 

< C (Q) (l (p 2! 2))

1

2

Zt 2

ti

1

Ilut1C-1 (E(u))2 ds

 

1

< C (Q) (l (p 2! 2))

2

 

(E(u))

1

 

sup

h<8<t2

2 x

0 Zt2

@t1

1 kutkm m ds A

m-1

0 Zt 2

@t1

1

ds A

1

M

 
 

(3.43)

m-1 1

( 1a )

M

C (Q) sup

h<8<t2

(E(t))

21 ( 2p ) l (p -- 2))

2

F (t)m-1

Then, taking into account (3.41) -- (3.43), estimate (3.36) takes the form

Zt 2

ti.

1

I(t)dt < (2C! + 3C2 w) C3F(t) sup E(s)2 + C:C2F(t)2

4 ti <8<t2

2 C3C (Q) sup (E(t))

1

2 F(t)m-1

1

M

a

+

h<8<t2

(3.44)

+8

,

I

ti

t

I

0

g(t -- s) 11V u112 dsdt + (1 48 + 1)

,

I

h

(g 0 Vu) (t)dt.

Moreover, from (3.4) and (3.10), we see that

E(t) = 2 kutk2

1 2 dt + J(t)

t

=

2 2p

1 Ilutg + (p 2) 1 -- I g(s)ds) 11V u112

0

(3.45)

1p 2p-- 2 \

+ ) (g 0 Vu) (t) + 1 I (t).

By integrating (3.45) over [t1, t2] , we obtain

,

I

,

E(t)dt = 1

2

Zt 2

h

11utg dt + 132p2/

,

I

,

0

@1 --

t

I

0

1 g(s)ds A 11Vu1122 dt

 

+ (p -- 2)

2p

Zt 2

,

(g o Vu)(t)dt + 1

P

Zt 2

,

I(t)dt, (3.46)

 

which implies by exploiting (3.32)

t 2

I

.

E(t)dt < c 1 (F (t))2 +

2 1

P

Zt 2

,

/(t)dt + (P -- 2)

2p

Zt 2

,

(g o Vu) (t)dt

 

(3.47)

+ (p -- 2)

2p

Zt 2

h

0

@1 --

t

I

0

1

g(s)ds A 11Vu1122 dt.

 

By using (3.11), Lemma 3.1.5, we see that

0

@1 --

t

I

0

 

)

g(s)ds 11V ug < 11(t). (3.48)

71

Therefore, (3.47), takes the form

t 2

I

Q)(

E(t)dt < C 2 (F(t))2 + (P -- 2)

2p

,

I

,

(g o Vu) (t)dt

 

+ (1 + p -- 2) .75, 2pii )

Zt 2

,

I(t)dt. (3.49)

 

Again an integration of (3.14) over [s, t2] , s E [0, t2] gives

E(s) = E(t2) + a

Zt 2

8

1

11ut(t)11: dr + 2

,

I

8

g(T) 11Vu(t)1122 dr

 

--

1

2

Zt 2

8

(g o Vu) (t)dr + w

Zt 2

8

11Vut(t)1122 dr (3.50)

 

Zt 2

,

E(s)ds >

t 2

I

1

E(t2)ds > 2E(t2)
· (3.51)

 

1

'

By using the fact that t2 -- ti > 2 we have

The fourth term in (3.44), can be handled as

t

I

0

g(t -- s) 1Vu122 ds = 1Vu122

t

I

0

g(t -- s)ds

 

(3.52)

< 2p (1 -- l) E (t). -- l (p -- 2)

Thus,

t2

I

t1

t

I

0

g(t -- s) 1Vuk22 dsdt < 2p (1 ~ l)

l (p -- 2)

t2

I

t1

E(t)dt

 

p (1 ~ l)

~ l (p -- 2)E(ti)

~ p (1 ~ l) l (p -- 2)E(t). (3.53)

Hence, by (3.53) , we obtain from (3.44)

t2

I

t1

1

I(t)dt < ( 20, + 3C2w) C3F(t) sup E(s)2 + C!C2F(t)2

4 ti<8<t2

2 C3C (Q) sup (E(t))

1

2 F(t)m-1

1

m

a

+

ti<8<t2

E(t) + ( 1 + 1)

+8 l (p -- 2) 48

t2

I

t1

(g o Vu) (t)dt. (3.54)

 

E(t) < 2

t2

I

t1

E(s)ds + a

t + 1

I

t

1

Iut(t)1mm dr + 2

t + 1

I

t

g(r) 1Vu(t)k22 dr

 

~

1

2

t + 1

I

t

(g' o Vu) (t)dr + w

t + 1

I

t

1Vut(t)k22 dr. (3.55)

 

From (3.50) and (3.51) we have

Obviously, (3.49) and (3.55) give us

( c (Q) )

f /(t)dt E(t) < 2 (F(t))2 + (P 2 2 ) t 2 t 2

I (g ° Vu) (t)dt + (1 + p -- 2)

2 p 2pn

tl tl

+a

Zt 2

,

1

kut(t)km m dt +

2

,

I

,

g (t) 11V u(t)g dt -- 12

,

I

,

(g' o Vu) (t)dt

 

Zt 2

,

+w

1Vut(t)k22 dt.

Consequently, plugging the estimate (3.54) into the above estimate, we conclude

E(t) < C (Q) (F(t))2 + (P 2)

P

,

I

,

(g o Vu) (t)dt

 

.V3C2 1

+2 11 + P-- 2) [(2C: + 4 w) C3F(t) sup E(s) 2 + C!C2F(t)21

P 2pn ti<8<t2

+

(1 + P 2) am1 C3C (Q) sup (E(t)) 2 F(t)m-1 p 2pi
t

i

<

8

<t2

+2 (1 p + 2pn p -- 2) [Sp1 (p -- 2) E (t) + (4S + 1 ) I (g 0 V u) (t)dt)1

1

l

t

t2

(3.56)

+Fm(t) -- 1

2

,

I

,

(g' o Vu) (t)dt + 2

,

I

,

g (t) 11V u(t)g dt.

 

We also have, by the Poincaré's inequality

I I u(s) I I 2 < C I I vu(s)II2

1

< C (1 (p --p 2))

2

E(t)

1

2

, (3.57)

 

Choosing 8 small enough so that

1 -- 2 (1 + p -- 2) Sp (1 -- 1)

(3.58)

p 2pi 1 (p -- 2) > 0'

we deduce, from (3.56) that there exists K > 0 such that

E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2 F(t)m-1 + F(t)m]

+

1

2

t + 1

I

t

g(s) 1Vu(s)k22 ds -- 1

2

t + 1

I

t

(g' o Vu) (s)ds

 

(3.59)

#177;[(p ;2) #177; 2 ( 15. #177; 0 (p i_ #177; p 2-13712)1

t + 1

I

t

(g o Vu) (s)ds

 

,

I

,

Using (G2) again we can write

,

I

,

(g o Vu) (t)dt < --

 

(g' 0 Vu) (t)dt, > 0.

Then, we obtain, from (3.59),

1 1 ,

E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2 F(t)m-1 + F(t)m]

(3.60)

g(s)11Vu(s)gds -- ( 6+ 2)

1

+ 2

t + 1

I

t

t + 1

I

t

(g' o Vu) (s)ds.

where 6. = [(p ;2) + 2 (.731 #177; p 2p--n) ( 45+ 1 )J

An appropriate use of Young's inequality in (3.60), we can find K1 > 0 such that

E(t) < K1 [F(t)2 + F(t)2(m-1) + F(t)m] (3.61)

g(s)11Vu(s)gds -- ( 6+ 2)

3

(g' o Vu) (s)ds 5 ,

t + 1

I

t

t + 1

I

t

[

1

2

for K1 a positive constant.

Using (G2) again to get

E(t) < K1 [F(t)2 + F(t)2(m-1) + F(t)m]

+ [ (1 + 2 f

g (s) 11V u(s) g ds -- (61 + 2)

t + 1

I

t

t+ 1

I

t

(g' o Vu) (s)ds

< K1 [F(t)2 + F(t)2(m-1) + F(t)m]

(3.62)

t + 1 t + 1

+ (1 + gi)

[2

1 I

I g(s) 11V u(s)112 2 2 ds -- (g' o Vu) (s)ds

t t

At this end we distinguish two cases:

Case 1. m = 2. In this case we use (3.28) and (3.62), we can find K2 > 0 such that

E(t) < K1 F(t)2

t+ 1 t + 1

+ (1 + gi)

[2

I g(s) 11V u(s)112 ds -- 2 II (g' o Vu) (s)ds

t 1

t

< K2 [E(t) -- E(t + 1)] . (3.63)

Since E(t) is nonincreasing and nonnegative function, an application of Lemma 3.2.1 yields

E(t) < K2 [E(t) -- E(t + 1)] , t > 0, (3.64)

which implies that

E(t) < E (0) exp (--A [t -- 1]1 , on [0, oo) , (3.65)

where A = ln

K2 -- 1

( K2

Case 2. m > 2. In this case we, again use (3.28) and (3.62) to arrive at

2

m

. (3.66)

t + 1 t+ 1t t

F(t)2 = (E(t) -- E(t + 1)) -- 2 1 I g(s) 11V u(s) g ds + 21 I (g' o Vu) (s)ds

m

2 < 2

We then use the algebraic inequality

(a + b)

m ( m m

2 a2 + b2), m > 2. (3.67)

To infer from (3.62), and by using (3.67), that

[E(t)]

m [1 + F (t)2(m_2) + F (t)m_2]

2 < K3

m

2 F(t)m

 

 

m

2 (1 + 21)

m

2

4

ft + 1

1 g(s) MVu(s)M2 2 ds _ 1

2 2

t

Zt + 1

t

3

(g' o Vu) (s)ds 5

m
2

+2

 
 
 

[1 + F (t)2(m_2) + F (t)m_2]m

< K3 2 x [E(t) - E(t + 1)]

(3.68)

 

m

2 (1 + 21)

m

2

4

ft + 1

1 g(s) MVu(s)M2 2 ds _ 1

2 2

t

Zt + 1

t

3

(g' o Vu) (s)ds 5

m
2

+2

 
 
 

m

where K3 = 2

2 K1. We use (3.28) to obtain

 

0
@

1

2

Zt + 1

t

g(s) VuM2 2 ds - 1

2

Zt + 1

t

1 (g' o Vu) (s)ds A

m
2

 

m

< (E(t) - E(t + 1))

A combination of (3.68), (3.69) yields

2 (3.69)

 

[E(t)]

m 2 < K3 [1 + F(t)2(m_2) + F(t)m_2]

m

2 x (E(t) - E(t + 1))

 

+2

m

2 (1 + 21)

m

2 [E(t) -- E(t + 1)]

m 2 -1 [E(t) - E(t + 1)]

 

[ ]

m m m

< K3 [1 + F (t)2(m_2) + F (t)m_2]m 2 + 2 2 ~1

2 (1 + 21) 2 [E(t) - E(t + 1)] x

[E(t) - E(t + 1)] (3.70)

By using (3.62), the estimate (3.70) takes the form

[E(t)]

m

2 <

{ m m m m

K32m [1 + E(0)(m_2) + (E(0)) 2 ~1i 2 _1}

+ 2 2 (1 + 21) 2 (E(0)) ~

 

(E(t) - E(t + 1))

< K0 (E(t) - E(t + 1)). (3.71)

Again, using Lemma 3.2.1, we conclude

E(t) < [E(0)_r + K0r [t -- 11+18 , (3.72)

Tn

with r =

2

2

1 > 0, s = and K0 is some given positive constant.

2 -- n-i

This completes the proof.

précédent sommaire suivant






Extinction Rebellion







Changeons ce systeme injuste, Soyez votre propre syndic



"Un démenti, si pauvre qu'il soit, rassure les sots et déroute les incrédules"   Talleyrand