WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire

Extinction Rebellion

Bibliography

[1] J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, (2) 28, 473-486, (1977).

[2] S. Berrimi and S. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electronic journal of differential equations, 88, 1-10, (2004).

[3] S. Berrimi and S. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear analysis, 64, 2314-2331, ( 2006).

[4] H. Brézis, "Analyse Fonctionnelle- Theorie et applications," Dunod, Paris (1999).

[5] M. M. Cavalcanti, V. N. D. Calvalcanti and J. A. Soriano, Exponential decay for the solutions of semilinear viscoelastic wave equations with localized damping, Electronic journal of differential equations, 44, 1-44, (2002).

[6] M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semi-linear wave equation, SIAM journal on control and optimization, 42(4), 1310-1324, (200).

[7] M. M. Cavalcanti, D. Cavalcanti V. N and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci, 24, 1043-1053, (2001).

[8] M. M. Cavalcanti, D. Cavalcanti V. N, P. J. S. Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential and integral equations, 14(1), 85-116, (2001).

[9] T. Cazenave and A. Hareaux, Introduction aux Problems d'évolution semi-linéaires, Ellipses, societe de mathematiques appliquees et industrielles.

[10] A. D. D and Dinh APN, Strong solutions of quasilinear wave equation with nonlinear damping, SIAM. J. Math. Anal, 19, 337-347, (1988).

[11] C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic volterra integrodifferential equations, Partial differential equations, 4(3), 219-278, (1979).

[12] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal, 37 1970 297-308.

[13] F. Gazzola and M. Sequassina, Global solution and finite time blow up for damped semi-linear wave equation, Ann. I. H. Pointcaré-An 23 185-207, (2006).

[14] V. Georgiev and G. Todorova, Existence of solution of the wave equation with nonlinear damping and source terms, Journal of differential equations 109, 295-308, (1994).

[15] S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Advances in Differential Equations, July 2008.

[16] S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear wave equation, submitted.

[17] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal, 150, 191-206, (1988).

[18] W. J. Hrusa and M. Renardy, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal, Vol. 19, No 2, March (1988).

[19] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Analysis. Vol 27, no 10,1165-1175, (1996).

[20] V. K. Kalantarov and Ladyzhenskaya O. A, The occurrence of collapse for quasilinear equation of parabolic and hyperbolic type, J. Soviet Math, 10, 53-70, (1978).

[21] M. Kopackova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment Math. Univ. Carolin, 30(4), 713-719, (1989).

[22] Levine H. A and S. Park. Ro, Global existence and global nonexistence of solutions of the Cauchy problem for nonlinear damped wave equation, J. Math. Anal. Appl, 228, 181-205, (1998).

[23] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt = Au + F(u), Trans. Amer. Math. Sci, 192, 1-21, (1974).

[24] H. A. Levine, Some additional remarks on the nonexistence of global solutions of nonlinear wave equation, SIAM J. Math. Anal, 5, 138-146, (1974).

[25] H. A. Levine and J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipative, Arch. Rational Mech Anal, 137, 341-361, (1997).

[26] J. L. Lions, "quelques méthodes de résolution des problemes aux limites non lineaires," Dunod, Gaulthier-Villars, Paris (1969).

[27] J. L. Lions, "Controle optimal de systemes gouvernés par des équations aux dérivées partielles," Dunod, Gaulthier-Villars, Paris (1968).

[28] Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity, Quarterly of applied mathematics. Vol LIV, number 1, March, 21-31, (1996).

[29] S. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Maths Nachr, 260, 58-66, ( 2003).

[30] S. Messaoudi, On the control of solution of a viscoelastic equation, Journal of the ranklin Institute 344 765-776, (2007).

[31] S. Messaoudi, Blow up of positive-initial energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl, 320, 902-915, (2006).

[32] S. Messaoudi and B. Said-Houari, Global nonexistence of solutions of a class of wave equations with nonlinear damping and source terms, Math. Meth. Appl. Sc, 27, 1687-1696, (2004).

[33] S. Messaoudi and N-E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem, Mathematical. Sciences research journal, 7(4), 136-149, (2003).

[34] S. Messaoudi and N-E. Tatar, Global existence and uniform stability of a solutions for quasilinear viscoelastic problem, Math. Meth. Appl. Sci, 30, 665-680, (2007).

[35] S. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr, 231, 1-7, (2001).

[36] J. E. Munoz Rivera and M.G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptote. anal. 49 (34) (2006), pp. 189204.

[37] M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl, 56, 336-343, (1977).

[38] Vi. Pata, Exponential stability in viscoelasticity, Quarterly of applied mathematics volume LXIV, number 3, 499-513, September (2006).

[39] J. Peter. Olver, Ch. Shakiban, "Applied Mathematics," University of Minnesota, (2003).

[40] J. E. M. Rivera and E. C. Lapa and R. K. Barreto, Decay rates for viscoelastic plates with memory, Journal of elasticity 44: 61-87, (1996).

[41] J. E. M. Rivera and R. K. Barreto, Decay rates of solutions to thermoviscoelastic plates with memory, IMA journal of applied mathematics, 60, 263-283, (1998).

[42] B. Said-Houari, "Etude de l'interaction enter un terme dissipatif et un terme d'explosion pour un probleme hyperbolique," Memoire de magister ( 2002), Université de Annaba.

[43] R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equation," By the American Mathematical Society, (1997).

[44] Shun-Tang Wu and Long-Yi Tsai, On global existence and blow-up of solutions or an integro-differential equation with strong damping, Taiwanese journal of mathematics.é.979- 1014, (2006).

[45] G. Teshl, "Nonlinear Functional Analysis," Universitat Wien, (2001).

[46] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl, 239, 213-226, (1999).

[47] E. Vittilaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal, 149, 155-182, (1999).

[48] W. Walter, "Ordinary Differential Equations," Springer-Verlage, New York, Inc, (1998).

[49] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. PDE, 15, 205-235, (1990).

précédent sommaire






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"Et il n'est rien de plus beau que l'instant qui précède le voyage, l'instant ou l'horizon de demain vient nous rendre visite et nous dire ses promesses"   Milan Kundera