WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliography

[1] J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, (2) 28, 473-486, (1977).

[2] S. Berrimi and S. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electronic journal of differential equations, 88, 1-10, (2004).

[3] S. Berrimi and S. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear analysis, 64, 2314-2331, ( 2006).

[4] H. Brézis, "Analyse Fonctionnelle- Theorie et applications," Dunod, Paris (1999).

[5] M. M. Cavalcanti, V. N. D. Calvalcanti and J. A. Soriano, Exponential decay for the solutions of semilinear viscoelastic wave equations with localized damping, Electronic journal of differential equations, 44, 1-44, (2002).

[6] M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semi-linear wave equation, SIAM journal on control and optimization, 42(4), 1310-1324, (200).

[7] M. M. Cavalcanti, D. Cavalcanti V. N and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci, 24, 1043-1053, (2001).

[8] M. M. Cavalcanti, D. Cavalcanti V. N, P. J. S. Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential and integral equations, 14(1), 85-116, (2001).

[9] T. Cazenave and A. Hareaux, Introduction aux Problems d'évolution semi-linéaires, Ellipses, societe de mathematiques appliquees et industrielles.

[10] A. D. D and Dinh APN, Strong solutions of quasilinear wave equation with nonlinear damping, SIAM. J. Math. Anal, 19, 337-347, (1988).

[11] C. M. Dafermos and J. A. Nohel, Energy methods for nonlinear hyperbolic volterra integrodifferential equations, Partial differential equations, 4(3), 219-278, (1979).

[12] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal, 37 1970 297-308.

[13] F. Gazzola and M. Sequassina, Global solution and finite time blow up for damped semi-linear wave equation, Ann. I. H. Pointcaré-An 23 185-207, (2006).

[14] V. Georgiev and G. Todorova, Existence of solution of the wave equation with nonlinear damping and source terms, Journal of differential equations 109, 295-308, (1994).

[15] S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Advances in Differential Equations, July 2008.

[16] S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear wave equation, submitted.

[17] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal, 150, 191-206, (1988).

[18] W. J. Hrusa and M. Renardy, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal, Vol. 19, No 2, March (1988).

[19] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Analysis. Vol 27, no 10,1165-1175, (1996).

[20] V. K. Kalantarov and Ladyzhenskaya O. A, The occurrence of collapse for quasilinear equation of parabolic and hyperbolic type, J. Soviet Math, 10, 53-70, (1978).

[21] M. Kopackova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment Math. Univ. Carolin, 30(4), 713-719, (1989).

[22] Levine H. A and S. Park. Ro, Global existence and global nonexistence of solutions of the Cauchy problem for nonlinear damped wave equation, J. Math. Anal. Appl, 228, 181-205, (1998).

[23] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt = Au + F(u), Trans. Amer. Math. Sci, 192, 1-21, (1974).

[24] H. A. Levine, Some additional remarks on the nonexistence of global solutions of nonlinear wave equation, SIAM J. Math. Anal, 5, 138-146, (1974).

[25] H. A. Levine and J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipative, Arch. Rational Mech Anal, 137, 341-361, (1997).

[26] J. L. Lions, "quelques méthodes de résolution des problemes aux limites non lineaires," Dunod, Gaulthier-Villars, Paris (1969).

[27] J. L. Lions, "Controle optimal de systemes gouvernés par des équations aux dérivées partielles," Dunod, Gaulthier-Villars, Paris (1968).

[28] Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity, Quarterly of applied mathematics. Vol LIV, number 1, March, 21-31, (1996).

[29] S. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Maths Nachr, 260, 58-66, ( 2003).

[30] S. Messaoudi, On the control of solution of a viscoelastic equation, Journal of the ranklin Institute 344 765-776, (2007).

[31] S. Messaoudi, Blow up of positive-initial energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl, 320, 902-915, (2006).

[32] S. Messaoudi and B. Said-Houari, Global nonexistence of solutions of a class of wave equations with nonlinear damping and source terms, Math. Meth. Appl. Sc, 27, 1687-1696, (2004).

[33] S. Messaoudi and N-E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem, Mathematical. Sciences research journal, 7(4), 136-149, (2003).

[34] S. Messaoudi and N-E. Tatar, Global existence and uniform stability of a solutions for quasilinear viscoelastic problem, Math. Meth. Appl. Sci, 30, 665-680, (2007).

[35] S. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr, 231, 1-7, (2001).

[36] J. E. Munoz Rivera and M.G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptote. anal. 49 (34) (2006), pp. 189204.

[37] M. Nakao, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl, 56, 336-343, (1977).

[38] Vi. Pata, Exponential stability in viscoelasticity, Quarterly of applied mathematics volume LXIV, number 3, 499-513, September (2006).

[39] J. Peter. Olver, Ch. Shakiban, "Applied Mathematics," University of Minnesota, (2003).

[40] J. E. M. Rivera and E. C. Lapa and R. K. Barreto, Decay rates for viscoelastic plates with memory, Journal of elasticity 44: 61-87, (1996).

[41] J. E. M. Rivera and R. K. Barreto, Decay rates of solutions to thermoviscoelastic plates with memory, IMA journal of applied mathematics, 60, 263-283, (1998).

[42] B. Said-Houari, "Etude de l'interaction enter un terme dissipatif et un terme d'explosion pour un probleme hyperbolique," Memoire de magister ( 2002), Université de Annaba.

[43] R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equation," By the American Mathematical Society, (1997).

[44] Shun-Tang Wu and Long-Yi Tsai, On global existence and blow-up of solutions or an integro-differential equation with strong damping, Taiwanese journal of mathematics.é.979- 1014, (2006).

[45] G. Teshl, "Nonlinear Functional Analysis," Universitat Wien, (2001).

[46] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl, 239, 213-226, (1999).

[47] E. Vittilaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal, 149, 155-182, (1999).

[48] W. Walter, "Ordinary Differential Equations," Springer-Verlage, New York, Inc, (1998).

[49] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. PDE, 15, 205-235, (1990).

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Aux âmes bien nées, la valeur n'attend point le nombre des années"   Corneille