Annexe 3 : Surplus de productivité globale
15000
10000
5000
0
Charges Produits
30000
20000
10000
0
2014 2015 2016 2017 2018
Effets prix
2014 2015 2016 2017 2018
20000
Effets Volume
Charges Produits
Cumul des prix des concommations intermédiaires
1500
1000
500
0
-500
2000
Frais...
Engrais
Frais de...
Frais de...
Fournitures...
Produits de...
Semences et...
Concentrés... Co-produits... Autres... Fourrages...
Travaux par... Assurance...
Entretien du...
Fournitures et...
Achat petit... Entretien des...
Assurances
Eau +...
Carburants et...
Amendements
Taxes végétales
Litière
Autres charges...
Autre charge... Total charges...
Travaux par tiers
Annexe 4 : Analyse
économétrique
1. Tableau des corrélations
65
|
|
inputm--c inputm--x Effic
|
Eff_fix
|
Output--x UGBt
|
p_sal
|
p_fam
|
inputmix_Cc
|
1.0000
|
|
|
|
|
|
|
|
inputmix_ttx
|
0.5645
|
1.0000
|
|
|
|
|
|
|
Effic
|
-0.3464
|
-0.4402
|
1.0000
|
|
|
|
|
|
Eff_fix
|
0.2743
|
0.1329
|
0.0801
|
1.0000
|
|
|
|
|
Output_mix
|
0.1272
|
0.2926
|
-0.0888
|
0.0212
|
1.0000
|
|
|
|
UGBt
|
-0.2137
|
-0.0807
|
0.1327
|
-0.1496
|
0.0389
|
1.0000
|
|
|
p_sal
|
0.0443
|
0.0287
|
0.0527
|
-0.2172
|
-0.2464
|
0.1908
|
1.0000
|
|
p_fam
|
-0.0447
|
-0.0292
|
-0.0519
|
0.2170
|
0.2479
|
-0.1892
|
-1.0000
|
1.0000
|
2. Résultats des régressions Modèle 1
SML Estimator - Klein & Spady
(1993) Number of obs = 232
Wald chi2(10) = 28.54
Log likelihood = -143.6476 Prob >
chi2 = 0.0015
|
|
|
z
|
P>|z|
|
|
|
|
-6.126338
|
2.131705
|
-2.87
|
0.004
|
-10.3044
|
|
|
1.342439
|
.4214111
|
3.19
|
0.001
|
.5164884
|
|
|
3.964673
|
1.305206
|
3.04
|
0.002
|
1.406515
|
|
|
-.166478
|
.0602253
|
-2.76
|
0.006
|
-.2845174
|
|
|
-.0518639
|
.0188328
|
-2.75
|
0.006
|
-.0887755
|
|
|
-7.284566
|
2.430493
|
-3.00
|
0.003
|
-12.04824
|
|
|
-4.825555
|
1.565738
|
-3.08
|
0.002
|
-7.894345
|
|
|
-.0865798
|
.2719393
|
-0.32
|
0.750
|
-.619571
|
|
|
-1.985243
|
.4938343
|
-4.02
|
0.000
|
-2.953141
|
|
|
-6.296354
|
1.998617
|
-3.15
|
0.002
|
-10.21357
|
|
SPG
inputmix_ttx Effic Eff_fix
Output_mix UGBt p_sal BL
BV OL OV
Modèle 2
66
|
(1993)
|
Number of obs
Wald chi2(10)
Prob > chi2
|
|
|
|
|
z
|
|
|
-4.702727 .8861326
|
-5.31
|
|
|
2.11112 .3230809
|
6.53
|
|
|
5.403627 .8494171
|
6.36
|
|
|
-.1371009 .0219999
|
-6.23
|
|
|
-.049328 .0079393
|
-6.21
|
|
|
3.570408 .7299499
|
4.89
|
|
|
-8.36893 1.3053
|
-6.41
|
|
|
-3.460316 .551009
|
-6.28
|
|
|
-5.369289 .8467018
|
-6.34
|
|
|
SML Estimator - Klein &
Spady
-7.04142 1.136987
|
-6.19
|
=
|
Log likelihood = -137.97728
Modèle 3
|
|
=
=
|
SPG
Coef. Std. Err.
|
|
|
|
|
|
inputmix_ttx
Effic
|
|
|
Eff_fix
Output_mix
|
|
z
|
|
UGBt
|
13.37044 2.877644
|
4.65
|
|
p_fam
|
2.798795 .6762153
|
4.14
|
|
BL
|
5.3234 1.509151
|
3.53
|
|
BV
|
-.0698961 .0184043
|
-3.80
|
|
OL
|
-.0737061 .0181021
|
-4.07
|
|
OV
|
SML Estimator - Klein & Spady
(1993)
2.458854 .876104
|
2.81
|
|
|
-1.650545 .5525507
|
-2.99
|
|
Log likelihood = -134.52614
|
.7630603 .3911404
|
1.95
|
|
|
.5882186 .3511665
|
1.68
|
|
SPG
|
Coef. Std. Err.
.238109 .3086315
|
0.77
|
|
inputmix_Cc Effic Eff_fix
Modèle 4
|
|
|
Output_mix
UGBt
p_fam
|
|
|
BL
|
|
|
BV
OL
OV
SML Estimator - Klein & Spady
(1993)
|
|
|
Log likelihood = -134.53682
|
|
z
|
|
|
13.38926 2.890154
|
4.63
|
|
SPG
|
Coef. Std. Err.
2.801657 .677675
|
4.13
|
|
|
5.331068 1.50815
|
3.53
|
|
inputmix_Cc
|
-.0700413 .0184346
|
-3.80
|
|
Effic
|
-.0737466 .018136
|
-4.07
|
|
Eff_fix
|
-2.477623 .8754896
|
-2.83
|
|
Output_mix
|
-1.657471 .5463521
|
-3.03
|
|
UGBt
|
.7608851 .3923715
|
1.94
|
|
p_sal
|
.5858268 .3499485
|
1.67
|
|
BL
|
.2347853 .3064264
|
0.77
|
|
|