Etude de l'effet de l'éthylène sur la croissance de champignons filamenteux et la production de leurs mycotoxines associéespar Jonas CRUZEL Université Toulouse III Paul Sabatier - Master Diagnostic Microbiologiques : Approches Innovantes 2020 |
IV. Conclusion - PerspectivesCe projet étant exploratoire pour les 2 laboratoires de recherche, beaucoup de temps a été passé sur la mise au point des conditions et des paramètres expérimentaux. Tout cela avait pour but de mettre au point un système expérimental adéquat capable de tester l'hypothèse du « Rôle de l'éthylène sur la croissance de champignons filamenteux et sur la production des mycotoxines associées ». Une fois ce système mis au point, les tests faits sur chacun des champignons ont rapidement montré que le CO2 avait un impact critique sur l'action de notre gaz d'intérêt. En effet, il a été observé une augmentation de la production générale de mycotoxines lorsque l'éthylène est appliqué sans éliminer le CO2 naturellement produit par les espèces fongiques. Cependant, cette observation nous a permis de voir que les champignons étudiés réagissent à l'éthylène et donc que ces derniers possèdent certainement des récepteurs à l'éthylène, non-caractérisé à ce jour. Bien que 26 les premiers résultats ne semblent pas être en faveur de l'utilisation de l'éthylène comme agent de biocontrôle, les derniers résultats obtenus lorsque le CO2 est piégé par la chaux sodée semblent prometteur puisqu'une diminution importante de la production de mycotoxines d'un facteur 2 ou plus est observée. Dans le but d'obtenir des résultats statistiquement valables, il est nécessaire de poursuivre la suite de ces expérimentations, de manière à prouver la répétabilité et la reproductibilité des premiers résultats recueillis. A partir des résultats obtenus, bien d'autres analyses pourront être faites pour appuyer ou réfuter l'hypothèse émise, comme par exemple une étude du transcriptome pour visualiser les gènes dont l'expression est modifiée par l'application d'éthylène qui mènera ensuite à l'identification des protéines impliquées dans la voie de signalisation de ce gaz chez les champignons filamenteux. Une autre stratégie serait d'acquérir des souches mutantes de ces mêmes gènes afin d'étudier leur phénotype macro- et microscopique lors d'une exposition à l'éthylène. V. Bibliographie Abeles, F.B., Morgan, P.W., and Saltveit, M.E. (1992). Jr Ethylene in Plant Biology, 2nd Edition. (San Diego: Academic Press) Affeldt, K.J., Carrig, J., Amare, M., and Keller, N.P. (2014). Global survey of canonical Aspergillus flavus G protein-coupled receptors. mBio 5(5):e01501-14. doi:10.1128/mBio.01501-14. AFSSA, rapport (2009) Evaluation des risques liés à la présence de mycotoxines dans les chaines alimentaires humaine et animale. Rapport final. Alassane-Kpembi, I., Schatzmayr, G., Taranu, I., Marin, D., Puel, O., and Oswald, I.P. (2017). Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit Rev Food Sci Nutr, 57(16):3489-3507. doi:10.1080/10408398.2016.1140632 Al-Doory, Y. & Domson, J.F. (1984). Mould allergy. Philadelphia: Lee & Febiger. Andersen, B., Smedsgaard, J., and Frisvad, J.C. (2004). Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J. Agric. Food Chem. 52, 2421-2428. Anses, 2011. Etude nationale de surveillance des expositions alimentaires aux substances chimiques - 2e étude de l'alimentation totale 2006- 2010 (EAT 2). Tome I: Contaminants inorganiques, minéraux, polluants organiques persistants, mycotoxines et phyto-estrogènes Anses, 2012. Fiche de description de danger biologique transmissible par les aliments / Aspergillus flavus et autres moisissures productrices d'aflatoxines. 27 Asao, T., Buchi, G., Abdel-Keder, M.M., Chang, S.B., Wick, E.L. and Wvogan, G.N. (1963). Aflatoxins B and G. J. Amer. Chem. Soc., 85,11, 1706-1707. doi:10.1021/ja00894a050 Ashiq, S., Hussain, M., and Ahmad, B. (2014). Natural occurrence of mycotoxins in medicinal plants: a review. Fungal genetics and biology : FG &
B, 66, 1-10. Bakshi, A., Piya, S., Fernandez, J.-C., Chervin, C., Hewezi, T., and Binder, B.M. (2018). Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses. Plant physiology, 176(1), 910-929. https://doi.org/10.1104/pp.17.01321 Bakshi, A, Shemansky, J, Chang, C, and Binder, B. (2015). History of Research on the Plant Hormone Ethylene. Journal of Plant Growth Regulation. 34. 1-19. 10.1007/s00344-015-9522-9. Ballester, A.R., Marcet-Houben, M., Levin, E., Sela, N., Selma-Lázaro, C., Carmona, L., Wisniewski, M., Droby, S., González-Candelas, L., and Gabaldón, T. (2015). Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular plant-microbe interactions :
MPMI, 28(3), 232-248. Bapat, V., Trivedi, P., Ghosh, A., Sane, V., Ganapathi, T., and Nath, P. (2009). Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology advances. 28. 94-107. 10.1016/j.biotechadv.2009.10.002. Bbosa, G., Kitya, D., Lubega, A., Ogwal-Okeng, J., Anokbonggo, W., and Kyegombe, D. (2013). Review of the Biological and Health Effects of Aflatoxins on Body Organs and Body Systems. 10.5772/51201. Blankenship, S. & Dole, J. (2003) 1-Methylcyclopropene: A Review. Postharvest Biology and Technology, 28, 1-25. http://dx.doi.org/10.1016/S0925-5214(02)00246-6 Bleecker, A.B., Estelle, M.A., Somerville, C., and Kende, H. (1988). Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science (New York, N.Y.), 241(4869), 1086- 1089. https://doi.org/10.1126/science.241.4869.1086 Bluma, R., & Etcheverry, M. (2008). Application of essential oils in maize grain: Impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food microbiology. 25. 32434. 10.1016/j.fm.2007.10.004. Bondy, G.S., & Pestka, J.J. (2000). Immunomodulation by fungal toxins. Journal of toxicology and environmental health. Part B, Critical reviews,
3(2), 109-143. 28 Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K. et al. (2017). Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 171, 287. Brown, N.A., Schrevens, S., Van Dijck, P., and Goldman, G.H. (2018). Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nature microbiology, 3(4), 402- 414. https://doi.org/10.1038/s41564-018-0127-5 Bullerman, B.L., & Bianchini, A. (2007). Stability of mycotoxins during food processing, International Journal of Food Microbiology, 119, 1-2, 140-146, ISSN 0168-1605, https://doi.org/10.1016/j.ijfoodmicro.2007.07.035. Burg, S.P., & Burg, E.A. (1967). Molecular requirements for the biological activity of ethylene. Plant physiology, 42(1), 144-152. https://doi.org/10.1104/pp.42.1.144 Cardoso, P., Queiroz, M., Pereira, O., Araújo, E. (2007). Morphological and molecular differentiation of the pectinase producing fungi Penicillium expansum and Penicillium griseoroseum. Brazilian Journal of Microbiology - BRAZ J MICROBIOL. 38. 10.1590/S1517-83822007000100015. CAST, rapport (2003) Mycotoxins: Risks in Plant, Animal, and Human Systems on Richard, J. L and Payne, G. A. eds. Council for Agricultural Science and Technology. Task Force report No. 139, Ames, Iowa, USA. Chagué, V., Danit, L.V., Siewers, V., Schulze-Gronover, C., Tudzynski, P., Tudzynski, B., and Sharon, A. (2006). Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?. Molecular plant-microbe interactions : MPMI, 19(1), 33-42. https://doi.org/10.1094/MPMI-19-0033 Chang, C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science (New York, N.Y.), 262(5133), 539-544. https://doi.org/10.1126/science.8211181 Clarke M. (2006). The 1944 patulin trial of the British Medical Research Council. Journal of the Royal Society of Medicine, 99(9), 478-480. https://doi.org/10.1258/jrsm.99.9.478 Davis, N.D. & Diener, U.L. (1983). Biology of A. flavus and A. parasiticus. In Aflatoxin and Aspergillus flaw in corn. Southern Cooperative Series Bulletin 279, p. 1, Auburn, AL. De Wild, H.P.J., Otma, E.C., and Peppelenbos, H.W. (2003). Carbon dioxide action on ethylene biosynthesis of preclimacteric and climacteric pear fruit, Journal of Experimental Botany, Volume 54, Issue 387, Pages 1537-1544, https://doi.org/10.1093/jxb/erg159 Drew, S.W., & Demain, A.L. (1977). Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbial. 31, 343-356. El-Kazzaz, M.K., Sommer, N.F., and Kader, A.A. (1983). Ethylene effects on in vitro and in vivo growth of certain postharvest fruit-infecting fungi. Phytopathology, 73, 998-1001. El-Maarouf-Bouteau H., Sajjad Y., Bazin J., et al. (2015). Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ, 38(2):364-374. doi:10.1111/pce.12371 Escrivá, L., Font, G., Manyes, L., and Berrada, H. (2017). Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins, 9(8), 251. https://doi.org/10.3390/toxins9080251 Evans, D.E., Dodds, J.H., Lloyd, P.C. et al. (1982). A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris L. by high resolution autoradiography. Planta 154, 48-52. https://doi.org/10.1007/BF00385495 Flaishman, M.A., & Kolattukudy, P.E. (1994). Timing of fungal invasion using host's ripening hormone as a signal. Proceedings of the National Academy of Sciences Jul 1994, 91 (14) 65796583; DOI: 10.1073/pnas.91.14.6579 29 Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S., and Vierstra, R.D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101 6803-6808 Galagan, J.E., Henn, M.R., Ma, L.J., Cuomo, C.A. and Birren, B. (2005) Genomics of the Fungal Kingdom: Insights into Eukaryotic Biology. Genome Res. 15, 1620-1631. Gautier, M., Normand, A.-C., Ranque, S. (2016). Previously unknown species of Aspergillus. Clinical Microbiology and Infection, 22, 8, 662-669, ISSN
1198-743X, Gunterus, A., Roze, L. V., Beaudry, R., and Linz, J.E. (2007). Ethylene inhibits aflatoxin biosynthesis in Aspergillus parasiticus grown on peanuts. Food microbiology, 24(6), 658-663. https://doi.org/10.1016/j.fm.2006.12.006 Gupta R.C. (2012) Veterinary Toxicology. Basic and clinical Principles, 2nd Edition. Elsevier, Inc. USA, pp. 1181-1190. Guzmán, P., & Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant cell, 2(6), 513-523. https://doi.org/10.1105/tpc.2.6.513 Hedayati, M.T., Pasqualotto, A.C., Warn, P.A., Bowyer, P., and Denning, D.W. (2007). Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology (Reading, England), 153(Pt 6), 1677-1692. https://doi.org/10.1099/mic.0.2007/007641-0 30 Hicks, J.H., Yu, J.-H, Keller, N.P. and Adams, T.H. (1997). Aspergillus sporulation and mycotoxin production both require inactivation of the FadA Gá protein-dependent signaling pathway. EMBO J 16: 4916-4923. DOI: 10.1093/emboi/16.16.4916 Horn, B.W. (2007). Biodiversity of Aspergillus section Flavi in the United States: a review. Food Addit.Contam. 24[10], 1088-1101. INRS (2010). Dossier médico-technique, Mycotoxines en milieu de travail. II. Exposition, risques, prévention. Documents pour le médecin du travail, TC 131. Iram, W., Anjum, T., Iqbal, M., Ghaffar, A., Abbas, M., and Khan, A.M. (2016). Structural analysis and biological toxicity of aflatoxins B1 and B2 degradation products following detoxification by Ocimum basilicum and Cassia fistula aqueous extracts. Frontiers in Microbiology, 7, pp. 1-18. https://doi.org/10.3389/fmicb.2016.01105 Jahanshiri, Z., Shams-Ghahfarokhi, M., Allameh, A., and Razzaghi-Abyaneh, M. (2012). Effect of Curcumin on Aspergillus Parasiticus Growth and Expression of Major Genes Involved in the Early and Late Stages of Aflatoxin Biosynthesis. Iranian journal of public health. 41. 72-79. Ju, C., & Chang, C. (2015). Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant physiology, 169(1), 85-95. https://doi.org/10.1104/pp.15.00845 Karaffa, L., Sándor, E., Fekete, E., and Szentirmai, A. (2001). The biochemistry of citric acid accumulation by Aspergillus niger. Acta microbiologica et immunologica Hungarica, 48(3-4), 429-440. https://doi.org/10.1556/AMicr.48.2001.3-4.11 Kenakin, T. & Miller, L.J. (2010). Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery. Pharmacological Reviews, 62 (2) 265-304. DOI: https://doi.org/10.1124/pr.108.000992 Kêpczyñski J., & Kêpczyñska E. (1977). Effect of ethylene on germination of fungal spores causing fruit rot. Fruit Science Report, 4, pp. 31-35 Krishnan, A., Almén, M.S., Fredriksson, R., and Schiöth, H.B. (2012). The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PloS one, 7(1), e29817. https://doi.org/10.1371/journal.pone.0029817 Krska, R., Schubert-Ullrich, P., Molinelli, A., Sulyok, M., MacDonald, S., and Crews, C. (2008). Mycotoxin Analysis: An Update. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 25. 152-63. 10.1080/02652030701765723. Kurahashi, T., Matsumoto, T., and Itamura, H. (2005). Effects of 1-Methylcyclopropene (1-MCP) and Ethylene Absorbent on Softening and Shelf Life of Dry Ice-treated Japanese Persimmon 'Saijo' Harvested at Various Maturation Stages. Engei Gakkai Zasshi. 74. 63-67. 10.2503/jjshs.74.63. 31 Lengeler, K.B., Davidson, R.C., D'souza, C., et al. (2000). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol
Rev. 64(4):746-785. Li, Z.G., Chen, H.W., Li, Q.T., Tao, J.J., Bian, X.H., Ma, B., Zhang, W.K., Chen, S.Y., and Zhang, J.S. (2015). Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Scientific reports, 5, 12477. https://doi.org/10.1038/srep12477 Lin, Z., Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. Journal of experimental botany, 60(12), 3311-3336. https://doi.org/10.1093/jxb/erp204 Lv, Z., Yao, Y., Lv, Z., and Min, H. (2008). Effect of tetrahydrofuran on enzyme activities in activated sludge. Ecotoxicology and environmental
safety, 70(2), 259-265. Lynch, J. (1975) Ethylene in soil. Nature 256, 576-577. https://doi.org/10.1038/256576a0 Magan, N., & Aldred, D. (2007). Post-harvest control strategies: minimizing mycotoxins in the food chain. International journal of food
microbiology, 119(1-2), 131-139. Mahajan, P., Luca, A., and Edelenbos, M. (2014). Impact of Mixtures of Different Fresh-Cut Fruits on Respiration and Ethylene Production Rates. Journal of Food Science. 79. 10.1111/17503841.12512. Martín, J.F., Van den Berg, M.A., Ver Loren van Themaat, E., and Liras, P. (2019). Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnology
advances, 37(6), 107392. McCallum, J., Tsao, R., and Zhou, T. (2003). Factors Affecting Patulin Production by Penicillium expansum. Journal of food protection. 65. 1937-42. 10.4315/0362-028X-65.12.1937. Meissonnier, G., Pinton, P., Laffitte, J., Cossalter, A.M., Gong, Y., Wild, C. et al. (2008). Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicology and applied pharmacology. 231. 142-9. 10.1016/j.taap.2008.04.004. Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K.R., Enríquez, P., Binder, B.M., Heber, S., Stepanova, A.N., and Alonso, J.M. (2015). Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell, 163(3), 684-697. https://doi.org/10.1016/j.cell.2015.09.036 Moake, M.M., Padilla-Zakour, O.I., and Worobo, R.W. (2005). Comprehensive review of patulin control methods in food. Comprehen Rev Food Sci Food Safety 1:8-21. 32 Moussatche, P., & Klee, H.J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. The Journal of biological chemistry, 279(47), 48734-48741. https://doi.org/10.1074/jbc.M403100200 Neri, F., Donati, I., Veronesi, F., Mazzoni, D., and Mari, M. (2010). Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. International journal of food microbiology. 143. 109-17. 10.1016/j.ijfoodmicro.2010.08.002. O'Malley, R.C., Rodriguez, F.I., Esch, J.J., Binder, B.M., O'Donnell, P., Klee, H.J., and Bleecker, A.B. (2005). Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. The Plant journal : for cell and molecular biology, 41(5), 651-659. https://doi.org/10.1111/j.1365-313X.2004.02331.x ONU (1983). Organisation des Nations Unies pour l'Alimentation et l'Agriculture, l'Organisation Mondiale de la Santé et le Programme des Nations Unies pour l'Environnement : Perspectives sur les mycotoxines. Ortiz, G., Sugaya, S., Sekozawa, Y., Ito, H., Wada, K., and Gemma, H. (2005). Efficacy of 1-Methylcyclopropene (1-MCP) in Prolonging the Shelflife of 'Rendaiji' Persimmon Fruits Previously Subjected to Astringency Removal Treatment. Engei Gakkai Zasshi. 74. 248-254. 10.2503/jjshs.74.248. Özdemir, Y., Erdoðan, S., Sayin, E.O. and Kurultay, . (2009). Changes of patulin concentration in apple products during processing stages: A review. Tarým Bilimleri Araþtýrma Derg. 2:47-52. Paterson, R.R. (2006). Fungi and fungal toxins as weapons. Mycological research, 110(Pt 9), 1003-1010. https://doi.org/10.1016/j.mycres.2006.04.004 Pitt, J.I., & Miller, J.D. (2017). A Concise History of Mycotoxin Research. Journal of agricultural and food chemistry, 65(33), 7021-7033. https://doi.org/10.1021/acs.jafc.6b04494 Pristijono, P., Bowyer, M.C., Scarlett, C.J., Vuong, Q.V., Stathopoulos, C.E., Golding, J.B. (2018). Combined postharvest UV-C and 1-methylcyclopropene (1-MCP) treatment, followed by storage continuously in low level of ethylene atmosphere improves the quality of Tahitian limes. J Food Sci Technol. 55:2467-2475. doi: 10.1007/s13197-018-3164-4. Puel, O., Galtier, P. and Oswald, I. (2010). Biosynthesis and Toxicological Effects of Patulin. Toxins. 2. 613-31. 10.3390/toxins2040613. Qiao H., Chang K.N., Yazaki J., and Ecker J.R. (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23: 512- 521 33 Razzaghi-Abyaneh, M., Allameh, A., Tiraihi, T., Shams-Ghahfarokhi, M., and Ghorbanian, M. (2005). Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts.
Mycopathologia, 159(4), 565-570. Richards, T.A., Leonard, G., and Wideman, J. G. (2017). What Defines the "Kingdom" Fungi?. Microbiology spectrum, 5(3),
10.1128/microbiolspec.FUNK-0044-2017. Rohlfs, M., Albert, M., Keller, N., and Kempken, F. (2007). Secondary chemicals protect mould from fungivory. Biology letters. 3. 523-5. 10.1098/rsbl.2007.0338. Ropars, J., Dupont, J., Fontanillas, E., Rodríguez de la Vega, R.C., Malagnac, F., Coton, M., et al. (2012) Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti. PLoS ONE 7(11): e49665. https://doi.org/10.1371/journal.pone.0049665 Roze, L.V., Calvo, A.M., Gunterus, A., Beaudry, R., Kall, M., and Linz, J.E. (2004). Ethylene modulates development and toxin biosynthesis in Aspergillus possibly via an ethylene sensor-mediated signaling pathway. J. Food Prot. 67 438-447. 10.4315/0362-028X-67.3.438 Shimizu, K., Hicks, J.K., Huang, T.P., and Keller, N.P. (2003). Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 165, 1095-1104. Sisler, E.C. (1979) Measurement of ethylene binding in plant tissue. Plant Physiol 64: 538-542 Sisler E.C. (1980) Role of carbon dioxide in reversing ethylene action in tobacco leaves. Tob Sci 24:53-55 Snini, S. (2014). Thèse : Elucidation de la voie de biosynthèse d'une mycotoxine, la patuline : caractérisation du cluster de gène et étude de la régulation. Stajich, J. (2017). Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiology Spectrum. 5. 10.1128/microbiolspec.FUNK-0055-2016. Street, I., Aman, S., Zubo, Y., Ramzan, A., Wang, X., Shakeel, S., et al. (2015). Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem. Plant physiology. 169. 10.1104/pp.15.00415. Streit, E., Naehrer, K., Rodrigues, I., and Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. Journal of the science of food and agriculture, 93(12), 2892-2899. https://doi.org/10.1002/jsfa.6225 Thippeswamy, S., Devihalli, M., Abhishek, U., and Manjunath, K. (2014). Inhibitory effect of alkaloids of Albizia amara and Albizia saman on growth and fumonisin B1 production by Fusarium verticillioides. International Food Research Journal. 21. 947-952. 34 Turner, N.W., Subrahmanyam, S., and Piletsky, S.A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica chimica
acta, 632(2), 168-180. Vaishnav, P., & Demain, A.L. (2011). Unexpected applications of secondary metabolites. Biotechnology advances, 29(2),
223-229. Varga, J., & Samson, R.A. (2008). Aspergillus in the genomic era. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-635-9 Varga, J., Frisvad, J.C., and Samson, R.A. (2011). Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in
mycology, 69(1), 57-80. Wang, W., Esch, J., Shiu, S.-H., Agula, H., Binder, B., Chang, C., Patterson, S., and Bleecker, A. (2006). Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor or Arabidopsis. The Plant Cell. Vol. 18, 3429-3442. Wang, F., Cui, X., Sun, Y., and Dong, C.H. (2013). Ethylene signaling and regulation in plant growth and stress responses. Plant cell reports, 32(7), 1099-1109. https://doi.org/10.1007/s00299-013-1421-6 Watanabe, M. (2008). Production of Mycotoxins by Penicillium expansum Inoculated into Apples. Journal of food protection. 71. 1714-9. 10.4315/0362-028X-71.8.1714. Wilken-Jensen, K., & Gravesen, S. (1984). Atlas of moulds in Europe causing respiratory allergy. Forlaget ASK, Copenhagen. Wilson, B.J. (1966). Toxins other than aflatoxins produced by Aspergillus flavus. Bacteriological reviews, 30(2), 478-484. Xie, C., Zhang, J.S. Zhou, H.L., Li, J., Zhang, Z., Wang, D.W., and Chen, S.Y. (2003). Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. The Plant journal : for cell and molecular biology. 33. 385-93. 10.1046/j.1365-313X.2003.01631.x. Yiannikouris, A. & Jouany, J.P. (2002). Mycotoxins in feeds and their fate in animals: A review. Animal Research - ANIM RES. 51. 81-99. 10.1051/animres:2002012. Zheng, H., Zhou, L., Dou, T., Han, X., Cai, Y., Zhan, X., Tang, C., Huang, J., and Wu, Q. (2010). Genome-wide prediction of G protein-coupled receptors in Verticillium spp. Fungal biology, 114 4, 359-68 . 35 |
|