WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Fréquence optimale et fréquence de 5 minutes: Une comparaison des volatilités réalisées journalières à  partir du modèle HAR-RV


par Joseph Junior Guerrier
Université de Montreal - Maitrise Scs Economiques 2013
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

VI- Conclusion

Ce rapport de recherche a permis de comparer les résultats de prévision du modèle HAR(3)-RV de Corsi (2009) appliqué à des séries de hautes fréquences du CHK stock regroupées en fréquence de 5 minutes et en fréquence optimale selon Bandi et Russell (2007) qui est de 9 minutes dans le cadre de ce travail. L'analyse descriptive des deux séries à partir de leur auto-corrélogramme laisse présager une certaine stationnarité des séries journalière ce que le test de Philippes et Perron (PP) confirme. Cependant l'estimation des modèles complets ne permet pas conclure que certains coefficients du modèle HAR(3)-RV sont statistiquement différents de zéro. On procède quand même à des prévisions hors échantillons pour 40 jours en utilisant le principe de la fenêtre récursive. La comparaison de la performance des deux séries est faite sous la base de comparaison de leur HRMSE. Cette étude a donc permis ( malgré certains anomalies rencontrée au niveau de certains résultats) de confirmer que la fréquence optimale proposée par Bandi et Russell (2007) permet d'effectuer une meilleure prévision que la fréquence de 5 minutes généralement utilisée.

25

VII- Annexe

Newey-West estimation Tableau # 1

. newey rvd5 rvd5t rvw5t rvm5t, lag(10)

Regression with Newey-West standard errors Number of obs = 232

maximum lag: 10 F( 3, 228) = 101.88

Prob > F = 0.0000

 
 

Newey-West

 
 
 
 

rvd5

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

rvd5t

.1588765

.1706757

0.93

0.353

-.1774269

.4951799

rvw5t

.568678

.1450324

3.92

0.000

.2829028

.8544532

rvm5t

.0599194

.1630507

0.37

0.714

-.2613594

.3811983

_cons

.0016249

.0005843

2.78

0.006

.0004736

.0027761

Tableau # 2

. newey rvd9 rvd9t rvw9t rvm9t, lag(10)

Regression with Newey-West standard errors Number of obs = 232

maximum lag: 10 F( 3, 228) = 76.50

Prob > F = 0.0000

 
 

Newey-West

 
 
 
 

rvd9

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

rvd9t

.4761764

.100971

4.72

0.000

.2772208

.6751319

rvw9t

.2226054

.1906846

1.17

0.244

-.153124

.5983348

rvm9t

.1174122

.1856543

0.63

0.528

-.2484053

.4832297

_cons

.0014324

.0005998

2.39

0.018

.0002504

.0026143

Test de Philippes et Perron

Tableau # 3

. pperron rvd5, notrend

Phillips-Perron test for unit root Number of obs = 231

Newey-West lags = 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -126.933 -20.237 -13.962 -11.175

Z(t) -9.017 -3.466 -2.881 -2.571

MacKinnon approximate p-value for Z(t) = 0.0000

Tableau # 4

. pperron rvw5t, notrend

Phillips-Perron test for unit root Number of obs = 231

Newey-West lags = 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -17.647 -20.237 -13.962 -11.175

Z(t) -3.006 -3.466 -2.881 -2.571

MacKinnon approximate p-value for Z(t) = 0.0343

Tableau # 5

. pperron rvm5t, notrend

Phillips-Perron test for unit root Number of obs 231

Newey-West lags 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -3.407 -20.237 -13.962 -11.175

Z(t) -1.313 -3.466 -2.881 -2.571

MacKinnon approximate p-value for Z(t) 0.6233

Tableau # 6

. pperron rvd9t, notrend

Phillips-Perron test for unit root Number of obs 231

Newey-West lags 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -77.259 -20.237 -13.962 -11.175

Z(t) -6.849 -3.466 -2.881 -2.571

MacKinnon approximate p-value for Z(t) 0.0000

Tableau # 7

. pperron rvw9t, notrend

Phillips-Perron test for unit root Number of obs 231

Newey-West lags 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -18.226 -20.237 -13.962 -11.175

Z(t) -3.004 -3.466 -2.881 -2.571

MacKinnon approximate p-value for Z(t) 0.0346

Tableau # 8

. pperron rvm9t, notrend

Phillips-Perron test for unit root Number of obs 231

Newey-West lags 4

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -2.605 -20.237 -13.962 -11.175

Z(t) -1.024 -3.466 -2.881 -2.571

26

MacKinnon approximate p-value for Z(t) 0.7442

27

Critere d'information AIC Tableau # 9

. varsoc rvd5, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs = 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

965.643

 
 
 

6.8e-06

-9.05768

-9.0513

-9.0419

1

996.071

60.856

1

0.000

5.2e-06

-9.334

-9.32124

-9.30243

2

1012.19

32.233

1

0.000

4.5e-06

-9.47593

-9.4568

-9.42859*

3

1014.18

3.9842*

1

0.046

4.4e-06*

-9.48525*

-9.45974*

-9.42213

4

1014.55

.74868

1

0.387

4.5e-06

-9.47938

-9.44749

-9.40047

5

1014.79

.47742

1

0.490

4.5e-06

-9.47223

-9.43396

-9.37754

6

1015.1

.61668

1

0.432

4.5e-06

-9.46573

-9.42109

-9.35527

7

1015.43

.65334

1

0.419

4.6e-06

-9.45941

-9.40839

-9.33316

8

1017.12

3.3774

1

0.066

4.5e-06

-9.46588

-9.40848

-9.32385

9

1017.25

.2765

1

0.599

4.6e-06

-9.45779

-9.39401

-9.29998

10

1018.09

1.6796

1

0.195

4.6e-06

-9.45628

-9.38613

-9.28269

11

1019.54

2.8946

1

0.089

4.6e-06

-9.46048

-9.38395

-9.27111

12

1020.6

2.1162

1

0.146

4.6e-06

-9.46103

-9.37812

-9.25588

13

1020.62

.0468

1

0.829

4.6e-06

-9.45186

-9.36257

-9.23093

14

1021.25

1.2501

1

0.264

4.6e-06

-9.44834

-9.35267

-9.21163

15

1021.3

.0956

1

0.757

4.7e-06

-9.4394

-9.33736

-9.1869

16

1021.3

.00606

1

0.938

4.7e-06

-9.43003

-9.32162

-9.16176

17

1021.51

.42539

1

0.514

4.7e-06

-9.42264

-9.30785

-9.13859

18

1022.08

1.1473

1

0.284

4.8e-06

-9.41864

-9.29747

-9.1188

19

1022.19

.20466

1

0.651

4.8e-06

-9.41021

-9.28266

-9.0946

Endogenous: rvd5 Exogenous: _cons

Tableau # 10

. varsoc rvw5t, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs = 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

1022.14

 
 
 

4.0e-06

-9.58814

-9.58176

-9.57235

1

1285.78

527.28

1

0.000

3.4e-07

-12.0542

-12.0415

-12.0227

2

1291.72

11.897

1

0.001

3.3e-07

-12.1007

-12.0816

-12.0534

3

1301.56

19.676

1

0.000

3.0e-07

-12.1837

-12.1582

-12.1206

4

1301.69

.24757

1

0.619

3.0e-07

-12.1755

-12.1436

-12.0966

5

1301.69

.00871

1

0.926

3.0e-07

-12.1661

-12.1278

-12.0714

6

1327.41

51.44

1

0.000

2.4e-07

-12.3982

-12.3536

-12.2878

7

1334.2

13.572

1

0.000

2.3e-07

-12.4525

-12.4015

-12.3263*

8

1334.38

.37296

1

0.541

2.3e-07

-12.4449

-12.3875

-12.3029

9

1335.46

2.1555

1

0.142

2.3e-07

-12.4456

-12.3819

-12.2878

10

1336.53

2.1364

1

0.144

2.3e-07

-12.4463

-12.3761

-12.2727

11

1343.75

14.441

1

0.000

2.2e-07*

-12.5047*

-12.4282*

-12.3153

12

1344.06

.62431

1

0.429

2.2e-07

-12.4982

-12.4153

-12.2931

13

1344.57

1.0094

1

0.315

2.2e-07

-12.4936

-12.4043

-12.2726

14

1344.59

.05235

1

0.819

2.2e-07

-12.4844

-12.3888

-12.2477

15

1344.68

.16865

1

0.681

2.2e-07

-12.4758

-12.3738

-12.2233

16

1346.51

3.6635

1

0.056

2.2e-07

-12.4836

-12.3752

-12.2154

17

1346.74

.46974

1

0.493

2.2e-07

-12.4765

-12.3617

-12.1924

18

1347.91

2.3321

1

0.127

2.2e-07

-12.478

-12.3568

-12.1782

19

1350.62

5.4272*

1

0.020

2.2e-07

-12.4941

-12.3666

-12.1785

Endogenous: rvw5t Exogenous: _cons

28

Tableau # 11

. varsoc rvm5t, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs = 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

1072.92

 
 
 

2.5e-06

-10.065

-10.0586

-10.0492

1

1540.51

935.19

1

0.000

3.1e-08

-14.4461

-14.4334

-14.4146

2

1553.12

25.225

1

0.000

2.8e-08

-14.5552

-14.536

-14.5078

3

1569.27

32.288

1

0.000

2.4e-08

-14.6974

-14.6718

-14.6342

4

1572.56

6.5848

1

0.010

2.4e-08*

-14.7189*

-14.687*

-14.64*

5

1573.06

.98896

1

0.320

2.4e-08

-14.7141

-14.6759

-14.6195

6

1573.06

.00256

1

0.960

2.4e-08

-14.7048

-14.6601

-14.5943

7

1573.33

.54111

1

0.462

2.4e-08

-14.6979

-14.6469

-14.5717

8

1573.59

.52426

1

0.469

2.4e-08

-14.691

-14.6336

-14.549

9

1573.73

.28101

1

0.596

2.5e-08

-14.6829

-14.6191

-14.5251

10

1575.54

3.6228

1

0.057

2.4e-08

-14.6905

-14.6204

-14.5169

11

1576.61

2.1275

1

0.145

2.4e-08

-14.6911

-14.6146

-14.5018

12

1576.95

.69892

1

0.403

2.5e-08

-14.685

-14.6021

-14.4799

13

1578.15

2.3871

1

0.122

2.5e-08

-14.6868

-14.5976

-14.4659

14

1580.27

4.2526*

1

0.039

2.4e-08

-14.6974

-14.6018

-14.4607

15

1580.33

.11598

1

0.733

2.4e-08

-14.6886

-14.5865

-14.4361

16

1580.42

.1785

1

0.673

2.5e-08

-14.68

-14.5716

-14.4117

17

1580.46

.08172

1

0.775

2.5e-08

-14.671

-14.5562

-14.387

18

1580.46

3.6e-05

1

0.995

2.5e-08

-14.6616

-14.5404

-14.3618

19

1580.46

.00116

1

0.973

2.5e-08

-14.6522

-14.5247

-14.3366

Endogenous: rvm5t Exogenous: _cons

Tableau # 12

. varsoc rvd9t, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs = 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

949.137

 
 
 

8.0e-06

-8.90269

-8.89631

-8.88691

1

1009.51

120.75

1

0.000

4.6e-06

-9.46022

-9.44747*

-9.42866*

2

1010.16

1.2945

1

0.255

4.6e-06

-9.45691

-9.43778

-9.40957

3

1012.47

4.6123*

1

0.032

4.5e-06

-9.46918

-9.44367

-9.40605

4

1013.56

2.1938

1

0.139

4.5e-06*

-9.47009*

-9.4382

-9.39118

5

1014.2

1.2639

1

0.261

4.5e-06

-9.46663

-9.42837

-9.37195

6

1014.2

.0144

1

0.904

4.6e-06

-9.45731

-9.41267

-9.34684

7

1014.5

.58938

1

0.443

4.6e-06

-9.45069

-9.39967

-9.32444

8

1016.01

3.0151

1

0.082

4.6e-06

-9.45545

-9.39805

-9.31343

9

1016.02

.02056

1

0.886

4.6e-06

-9.44616

-9.38238

-9.28835

10

1016.61

1.181

1

0.277

4.6e-06

-9.44231

-9.37216

-9.26873

11

1017.36

1.5134

1

0.219

4.7e-06

-9.44003

-9.3635

-9.25066

12

1017.51

.28995

1

0.590

4.7e-06

-9.432

-9.34909

-9.22685

13

1017.68

.34479

1

0.557

4.7e-06

-9.42423

-9.33494

-9.2033

14

1017.74

.12329

1

0.725

4.8e-06

-9.41542

-9.31976

-9.17871

15

1017.76

.02975

1

0.863

4.8e-06

-9.40617

-9.30413

-9.15368

16

1018.69

1.873

1

0.171

4.8e-06

-9.40557

-9.29715

-9.1373

17

1018.71

.02515

1

0.874

4.9e-06

-9.3963

-9.28151

-9.11225

18

1019

.57995

1

0.446

4.9e-06

-9.38963

-9.26846

-9.0898

19

1019.21

.42082

1

0.517

4.9e-06

-9.38222

-9.25467

-9.06661

Endogenous: rvd9t Exogenous: _cons

Tableau # 13

. varsoc rvw9t, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs = 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

998.66

 
 
 

5.0e-06

-9.3677

-9.36132

-9.35192

1

1270.74

544.16

1

0.000

3.9e-07

-11.913

-11.9003

-11.8815

2

1303.6

65.72

1

0.000

2.9e-07

-12.2122

-12.1931

-12.1648

3

1303.61

.01622

1

0.899

2.9e-07

-12.2029

-12.1774

-12.1397

4

1303.61

.00657

1

0.935

3.0e-07

-12.1935

-12.1616

-12.1146

5

1304.81

2.4097

1

0.121

3.0e-07

-12.1954

-12.1572

-12.1008

6

1321.53

33.431

1

0.000

2.6e-07

-12.343

-12.2984

-12.2325

7

1331.06

19.053

1

0.000

2.4e-07

-12.4231

-12.372

-12.2968*

8

1331.18

.25189

1

0.616

2.4e-07

-12.4149

-12.3575

-12.2728

9

1333.55

4.7365

1

0.030

2.3e-07

-12.4277

-12.3639

-12.2699

10

1333.73

.36485

1

0.546

2.4e-07

-12.42

-12.3499

-12.2464

11

1337.78

8.0918

1

0.004

2.3e-07*

-12.4486*

-12.3721*

-12.2593

12

1338.1

.64604

1

0.422

2.3e-07

-12.4423

-12.3594

-12.2371

13

1338.32

.44029

1

0.507

2.3e-07

-12.4349

-12.3457

-12.214

14

1338.39

.13826

1

0.710

2.3e-07

-12.4262

-12.3305

-12.1895

15

1340.31

3.8444

1

0.050

2.3e-07

-12.4349

-12.3328

-12.1824

16

1342.65

4.6721*

1

0.031

2.3e-07

-12.4474

-12.339

-12.1791

17

1343.48

1.6598

1

0.198

2.3e-07

-12.4458

-12.331

-12.1618

18

1343.79

.62957

1

0.428

2.3e-07

-12.4394

-12.3182

-12.1395

19

1345.5

3.4093

1

0.065

2.3e-07

-12.446

-12.3184

-12.1304

Endogenous: rvw9t Exogenous: _cons

29

Tableau # 14

. varsoc rvm9t, maxlag(19)

Selection-order criteria

Sample: 20 - 232 Number of obs 213

lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

1047.82

 
 
 

3.2e-06

-9.8293

-9.82293

-9.81352

1

1539.21

982.78

1

0.000

3.2e-08

-14.4339

-14.4212

-14.4024

2

1575.19

71.947

1

0.000

2.3e-08

-14.7623

-14.7432

-14.715*

3

1576.18

1.9946

1

0.158

2.3e-08

-14.7623

-14.7368

-14.6992

4

1580.04

7.7022*

1

0.006

2.2e-08

-14.7891

-14.7572*

-14.7102

5

1580.29

.50968

1

0.475

2.2e-08

-14.7821

-14.7438

-14.6874

6

1582.11

3.634

1

0.057

2.2e-08*

-14.7897*

-14.7451

-14.6793

7

1582.11

.00551

1

0.941

2.2e-08

-14.7804

-14.7294

-14.6541

8

1582.16

.10225

1

0.749

2.3e-08

-14.7715

-14.7141

-14.6294

9

1583.15

1.9731

1

0.160

2.3e-08

-14.7713

-14.7076

-14.6135

10

1583.89

1.483

1

0.223

2.3e-08

-14.7689

-14.6988

-14.5953

11

1584.4

1.0261

1

0.311

2.3e-08

-14.7643

-14.6878

-14.575

12

1585.6

2.3981

1

0.121

2.3e-08

-14.7662

-14.6833

-14.5611

13

1585.93

.66061

1

0.416

2.3e-08

-14.7599

-14.6706

-14.539

14

1586.66

1.4592

1

0.227

2.3e-08

-14.7574

-14.6617

-14.5207

15

1586.75

.18685

1

0.666

2.3e-08

-14.7489

-14.6468

-14.4964

16

1586.83

.15594

1

0.693

2.3e-08

-14.7402

-14.6318

-14.4719

17

1588.11

2.5604

1

0.110

2.3e-08

-14.7428

-14.628

-14.4588

18

1588.68

1.1275

1

0.288

2.3e-08

-14.7387

-14.6176

-14.4389

19

1588.68

.01461

1

0.904

2.3e-08

-14.7294

-14.6019

-14.4138

Endogenous: rvm9t Exogenous: _cons

Test ADF Tableau # 15

. dfuller rvd5t, regress lags(2) notrend

Augmented Dickey-Fuller test for unit root Number of obs 229

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -4.284 -3.467 -2.881 -2.571

D.rvd5t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvd5t

L1. -.2809236 .0655763 -4.28 0.000 -.4101457 -.1517014

LD. -.4417156 .075837 -5.82 0.000 -.5911573 -.2922739

L2D. -.1580934 .0657674 -2.40 0.017 -.2876922 -.0284946

_cons .0021674 .0005222 4.15 0.000 .0011384 .0031963

MacKinnon approximate p-value for Z(t) 0.0005

Tableau # 16

. dfuller rvw5t, regress lags(10) notrend

Augmented Dickey-Fuller test for unit root Number of obs 221

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -2.182 -3.470 -2.882 -2.572

MacKinnon approximate p-value for Z(t) 0.2127

D.rvw5t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvw5t

L1. -.0397431 .0182099 -2.18 0.030 -.0756417 -.0038444

LD. .2802849 .0657874 4.26 0.000 .150593 .4099769
L2D. .2182326 .0682612 3.20 0.002 .0836639 .3528013 L3D. .0981402 .0692491 1.42 0.158 -.0383759 .2346564 L4D. .1255755 .0686311 1.83 0.069 -.0097225 .2608734 L5D. -.6483546 .0677782 -9.57 0.000 -.781971 -.5147381 L6D. .1924941 .0662076 2.91 0.004 .0619738 .3230144 L7D. -.0106351 .0668405 -0.16 0.874 -.142403 .1211329 L8D. .1361763 .0664534 2.05 0.042 .0051715 .2671812 L9D. .1340599 .066091 2.03 0.044 .0037694 .2643504 L10D. -.2457259 .06465 -3.80 0.000 -.3731756 -.1182763

_cons .0002955 .0001432 2.06 0.040 .0000133 .0005778

Tableau # 17

. dfuller rvm5t, regress lags(3) notrend

Augmented Dickey-Fuller test for unit root Number of obs 228

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -2.349 -3.467 -2.881 -2.571

MacKinnon approximate p-value for Z(t) 0.1566

D.rvm5t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvm5t

L1. -.014036 .0059746 -2.35 0.020 -.0258099 -.002262 LD. .2322732 .0641551 3.62 0.000 .1058452 .3587011 L2D. .2218274 .0645003 3.44 0.001 .0947193 .3489355 L3D. .2194213 .0643873 3.41 0.001 .0925359 .3463067

_cons .0001009 .0000464 2.18 0.031 9.48e-06 .0001922

Tableau # 18

. dfuller rvd9t, regress lags(3) notrend

Augmented Dickey-Fuller test for unit root Number of obs 228

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -3.912 -3.467 -2.881 -2.571

D.rvd9t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvd9t

L1. -.2425242 .061996 -3.91 0.000 -.3646972 -.1203512 LD. -.184317 .0764362 -2.41 0.017 -.3349467 -.0336873 L2D. -.2233121 .0708373 -3.15 0.002 -.3629083 -.0837159 L3D. -.1155613 .0664932 -1.74 0.084 -.2465968 .0154742

_cons .0018751 .0004997 3.75 0.000 .0008904 .0028599

30

MacKinnon approximate p-value for Z(t) 0.0019

Tableau # 19

. dfuller rvw9t, regress lags(10) notrend

Augmented Dickey-Fuller test for unit root Number of obs 221

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -2.084 -3.470 -2.882 -2.572

MacKinnon approximate p-value for Z(t) 0.2508

D.rvw9t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvw9t

L1. -.0359766 .0172596 -2.08 0.038 -.0700019 -.0019513 LD. .5437895 .0670889 8.11 0.000 .4115318 .6760473 L2D. -.028812 .0770943 -0.37 0.709 -.1807942 .1231701 L3D. .0903163 .076735 1.18 0.241 -.0609575 .2415901 L4D. .1134796 .0757622 1.50 0.136 -.0358765 .2628356 L5D. -.6179893 .0736328 -8.39 0.000 -.7631474 -.4728312 L6D. .2863941 .0721614 3.97 0.000 .1441366 .4286517 L7D. -.0459403 .0743459 -0.62 0.537 -.1925044 .1006237 L8D. .1350603 .0742259 1.82 0.070 -.0112672 .2813877 L9D. .0574387 .0742832 0.77 0.440 -.0890017 .203879 L10D. -.1859631 .066097 -2.81 0.005 -.3162655 -.0556608

_cons .0002637 .0001373 1.92 0.056 -7.06e-06 .0005344

Tableau # 20

. dfuller rvm9t, regress lags(5) notrend

Augmented Dickey-Fuller test for unit root Number of obs 226

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -2.306 -3.468 -2.882 -2.572

31

MacKinnon approximate p-value for Z(t) 0.1700

D.rvm9t Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvm9t

L1. -.0132747 .0057565 -2.31 0.022 -.0246199 -.0019295

LD. .4335723 .0664152 6.53 0.000 .3026775 .5644671

L2D. -.0120557 .0725996 -0.17 0.868 -.1551389 .1310275

L3D. .1579577 .0716084 2.21 0.028 .016828 .2990874

L4D. .0148142 .072402 0.20 0.838 -.1278797 .157508

L5D. .1269073 .0663026 1.91 0.057 -.0037656 .2575801

_cons .0000926 .000045 2.06 0.041 3.95e-06 .0001812

NEWey West Tableau # 21

. newey rvd5 rvd5t rvw5t rvm5t, lag(10)

Regression with Newey-West standard errors Number of obs 232

maximum lag: 10 F( 3, 228) 102.46

Prob > F 0.0000

Newey-West

rvd5 Coef. Std. Err. t P>|t| [95% Conf. Interval]

rvd5t .1575747 .17043 0.92 0.356 -.1782444 .4933938 rvw5t .5831836 .1446845 4.03 0.000 .298094 .8682733 rvm5t .0385385 .1626678 0.24 0.813 -.281986 .359063 _cons .0016846 .0005856 2.88 0.004 .0005307 .0028384

. *(1 variable, 22 observations pasted into data editor) . *(1 variable, 22 observations pasted into data editor)

32

Tableau # 22

. newey rvd9 rvd9t rvw9t rvm9t, lag(10)

Regression with Newey-West standard errors Number of obs = 232

maximum lag: 10 F( 3, 228) = 76.50

Prob > F = 0.0000

 
 

Newey-West

 
 
 
 

rvd9

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

rvd9t

.4761764

.100971

4.72

0.000

.2772208

.6751319

rvw9t

.2226054

.1906846

1.17

0.244

-.153124

.5983348

rvm9t

.1174122

.1856543

0.63

0.528

-.2484053

.4832297

_cons

.0014324

.0005998

2.39

0.018

.0002504

.0026143

AR(5)

Tableau # 23 Optimal frequency (9mn)

. newey rvd91 rvd9t1 rvd9t2 rvd9t3 rvd9t4 rvd9t5, lag(22)

Regression with Newey-West maximum lag: 22

standard errors

Number of obs =

F( 5, 226) =

Prob > F =

232

147.65

0.0000

rvd91

Coef.

Newey-West

Std. Err.

t

P>|t|

[95% Conf.

Interval]

rvd9t1

.5665762

.0890361

6.36

0.000

.3911292

.7420232

rvd9t2

-.0443474

.0912277

-0.49

0.627

-.224113

.1354183

rvd9t3

.1114792

.0787403

1.42

0.158

-.0436798

.2666383

rvd9t4

.0850122

.0828578

1.03

0.306

-.0782604

.2482848

rvd9t5

.0516655

.0511692

1.01

0.314

-.0491642

.1524952

_cons

.0017742

.0002681

6.62

0.000

.0012459

.0023025

Tableau # 24

. reg rvd91 rvd9t1 rvd9t2 rvd9t3 rvd9t4

rvd9t5

 
 

Source

SS

df MS

 

Number of obs

= 247

 

F( 5, 241)

= 34.12

Model

.000825439

5 .000165088

 

Prob > F

= 0.0000

Residual

.001166175

241 4.8389e-06

 

R-squared

= 0.4145

 

Adj R-squared

= 0.4023

Total

.001991614

246 8.0960e-06

 

Root MSE

= .0022

rvd91

Coef.

Std. Err. t

P>|t|

[95% Conf.

Interval]

rvd9t1

.5179317

.0642906 8.06

0.000

.3912884

.644575

rvd9t2

-.0240526

.0723328 -0.33

0.740

-.1665379

.1184327

rvd9t3

.1429031

.071643 1.99

0.047

.0017767

.2840295

rvd9t4

.0589587

.0722263 0.82

0.415

-.0833167

.2012341

rvd9t5

.0569715

.0640357 0.89

0.375

-.0691697

.1831127

_cons

.0018899

.0004975 3.80

0.000

.0009098

.00287

33

précédent sommaire suivant










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Il existe une chose plus puissante que toutes les armées du monde, c'est une idée dont l'heure est venue"   Victor Hugo