WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Fréquence optimale et fréquence de 5 minutes: Une comparaison des volatilités réalisées journalières à  partir du modèle HAR-RV


par Joseph Junior Guerrier
Université de Montreal - Maitrise Scs Economiques 2013
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

VIII- Références

Adrian, T. and J. Rosenberg (2008). Stock returns and volatility: Pricing the short-run and long-run components of market risk. Journal of Finance 63 (6), 2997-3030.

Ait-Sahalia, Y, and L. Mancini. 2008. «Out of sample forecasts of quadratic variation.» Journal of Econometrics 147: 17-33.

Andersen, T.G., and T. Bollerslev. 1997. «Heterogeneous information arrivals and return volatility dynamics: Uncovering the long run in high frequency data.» Journal of Finance 52: 975-1005.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens. 2001. «The distribution of stock returns volatilities.» Journal of Financial Economics 61: 43-76.

Andersen, T, G., Dobrev, D and Schaumburg, E. 2010. «Jump-Robust Volatility estimation using nearest truncation». Federal Reserve Bank of New York Staff Reports. 38.

Alexander, C . 2008. «Market Analysis Vol1, Quantitative Methods in Finance». John Wiley and Sons Inc. 320.

Bandi, F. and B. Perron 2008. «Long-run risk-return trade-offs». Journal of Econometrics 143, 349-374.

Bandi, F and Russel, J. 2007. «Microstructure Noise, Realized Variance, and Optimal Sampling».

Bollerslev, T., C. Gallant, U. Pigorsch, C. Pigorsch, and G. Tauchen. 2006. «Statistical assessment of models for very high frequency financial price dynamics». Unpublished Manuscript.

Bollerslev, T., G. Tauchen, and H. Zhou. 2008. «Expected stock returns and variance risk premia». Review of Financial Studies 22 (11), 4463-4492.

Casas, I. and J. Gao. 2008. «Econometric estimation in long-range dependent volatility models: Theory and practice». Journal of econometrics 147 (1), 72-83.

Corsi, F. 2005. «Measuring and Modelling Realized Volatility: from tick-by-tick to long memory.» Ph. D. thesis, PhD in Finance, University of Lugano.

Corsi, F. 2009. «A simple approximate long-memory model of realized volatility». Journal of Financial Econometrics, Vol 7, No. 2,174-196.

Corsi, F, Pirino, D and Reno R. 2010. « Thershold bipower variation and the impact of jumps on volatility forecasting». Journal of Econometrics 159: 276-288.

34

Dacorogna, M. M., R. Genay, U. A. M· uller, R. B. Olsen, and O. V. Pictet. 2001. «An Introduction to High-Frequency Finance». San Diego, CA: Academic Press.

Corsi, F and Reno R. 2012. « Discrete-Time Volatility forecasting with persistent leverage effect and the link with continuous-time modeling». 31.

Granger, C. 1980. «Long memory relationships and the aggregation of dynamic models.» Journal of Econometrics 14: 227-238.

Hamilton, J, D 1994. « Time series Analysis». Princeton Universiti. 799.

Liu, L., Patton, A. J and Sheppard, K. 2012.» Does anything beat 5 Minutes RV? A comparison of Realized Measures Across Milti Asset Classes». Duke University and University of Oxford. 50.

Lynch, P., and G. Zumbach. 2003. «Market heterogeneities and the causal structure of volatility.» Quantitative Finance 3: 320-331.

Rossi, A., and G. Gallo. 2006. «Volatility estimation via hidden Markov models.» Journal of Empirical Finance 13: 203-230.

Rossi, E. and F. Spazzini (2010). «Finite sample results of range-based integrated volatility estimation». Working Paper.

Tsay, R, S.. 2005. «Analysis of Financial Time Series». John Wiley &Sons Inc. 638.

Visser, M. (2008). «Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure». Working Paper.

Zhang, L., P. A. Mykland, and Y. A·ýt-Sahalia (2005). «A tale of two time scales: Determining integrated volatility with noisy high-frequency data». Journal of the American Statistical Association 100, 1394-1411.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"L'imagination est plus importante que le savoir"   Albert Einstein