Conclusion
L'objectif de ce travail était l'optimisation des
paramètres d'hydrolyse de son de blé dans le but de l'utiliser
comme milieu de culture naturel de C. glutamicum 2262 pour la
production glutamtique.
La première partie de ce travail a essentiellement
été basée sur l'optimisation des paramètres
d'hydrolyse de son de blé en utilisant le model statistique Box Behnken.
Nous avons montré que les valeurs optimales de l'hydrolyse sont les
suivants : 85°C pour la température d'hydrolyse, 68 min pour le
temps d'hydrolyse et 11% pour la concentration d'acide sulfurique.
Dans la deuxième partie on a démontré que
l'hydrolysat de son de blé contient les différents
éléments nutritionnels (source de carbone, source d'azote et sels
minéraux) qui peuvent être utilisés par C. glutamicum
2262 afin de produire l'acide glutamique.
Finalement, l'objectif du travail est atteint. Cependant de
nombreuses perspectives peuvent être envisagées :
- L'enrichissement de milieu de culture par d'autres sources
d'azote et de vitamine.
- Utilisation de model Plakett Burmen pour étudier
l'effet des éléments nutritionnels sur la production
glutamique.
- Utilisation le mode semi-continu ou le mode continu pour une
meilleure productivité.
- Valorisation des autres parties de blé tel que la paille
de blé.
- Utilisation des enzymes spécifiques capables
d'augmenter le rendement de l'hydrolyse de cellulose.
Références bibliographiques
|
·
41
Bataillon M, P Mathaly, A P Nunes Cardinali and F Duchiron
(1998). Extraction and purification of arabinoxylan from destarched wheat bran
in a pilot scale. Industrial Crops and Products, 8(1), 37-43.
· Bingham S A, Day N E, Luben R, Ferrari P, Slimani N,
Norat T, Clavel-Chapelon F, Kesse E, Nieters A, Boeing H, Tjonneland A, Overvad
K, Martinez C, Dorronsoro M, Gonzalez C A, Key T J, Trichopoulou A, Naska A,
Vineis P, Tumino R, Krogh V, Bueno-de-Mesquita H B, Peeters P H M , Berglund G,
Hallmans G, Lund E, Skeie G, Kaaks R, and Riboli E (2003). Dietary fibre in
food and protection against colorectal cancer in the European Prospective
Investigation into Cancer and Nutrition (EPIC): an observational study. The
Lancet, 361, 1496-1501.
· Boudreau A and Ménard G (1992). Le
Blé, Éléments Fondamentaux et Transformation.
Sainte-Foy: Les Presses de l'Université Laval.
· Boulahya Brihmouche K A (2010). Importance de
l'enveloppe cellulaire dans la régulation de production de glutamate par
Corynebacterium 2262 au cour d'un procédé thermo-induit.
Mémoire de Doctorat. Université de Nancy.
· Bormann E R, Eikmanns B J and Sahm H (1992). Molecular
analysis of the Corynebactenium glutamicum gdh gene encoding glutamate
dehydrogenase. Mol. Microbiol, 6, 317-326.
· Box G E P and Wilson K B (1951). Journal of
Statistical Royal Society, 13 (1), 1-45.
· Box G E P and Behnken D W (1960). Some new three-level
designs for the study of quantitative variables. Technometrics,
2, 455-75.
· Box G E P (1988). Signal to noise ratios. Performance
criteria and transformations (with discussion), Technometrics,
30, 140p.
· Burkovski A and Kriimer R (2002). Bacterial Amino acid
transport proteins: occurrence, functions, and significance for
biotechnological applications. Appl. Microbiol. Biotechnol.,
58, 265-274.
· Caballero B, Trugo L C, and Finglas P M (2004).
Encyclopedia of food sciences and nutrition. New York: Academic Press,
pp 1813-1858.
· Çalik G, Unlutabak F and Ozdamar T H (2001).
Product and byproduct distributions in glutamic acid fermentation by
Brevibacterium flavum: effects of the oxygen transfer. Biochem Eng,
9, 91-101.
· Clément Y, Escoffier B, Trombe M C and
Lanéeile G (1984). Is glutamate excreted by its uptake system in
Corynebacterium glutamicum: A working hypothesis. J. General
Microbiol., 130, 2589-2594.
· Clément Y and Lanéelle G (1986).
Glutamate excretion mechanism in Corynebacterium glutamicum:
triggering by biotin starvation or by surfactant addition. J. General
Microbiol., 132, 925-929.
· Cocaign-Bousquet M, Guyonvarch A and Lindley N D
(1996). Growth rate dependent modulation of carbon flux through central
metabolism and the kinetic consequences for glucose-limited chemostat cultures
of Corynebacterium glutamicum. Appl. Environ. Microbiol.,
62: 429-436.
· Crueger W and Crueger A (1984). Amino acids. In Brock
T.D. (ed.), Biotechnology: A textbook of industrial microbiology.
Madison: Science Tech, Inc., pp127-147.
· Daniel Ballerini (2006). biocarburants: Etat des lieux,
perspectives et enjeux du Développement. Chapitre 6, France, pp
264-287,
· Das K, Anis M, Mohd-Azemi B M N and Ismail N (1995).
Fermentation and recovery of glutamic acid from palm waste hydrolysate by
ion-exchange resin column. Biotechnol. Bioeng, 48,
551-555.
42
Références bibliographiques
· Davin U Y (2003). Etude cinétique et
métabolique de Corynebacterium glutamicum 2262 au cours de la
fermentation glutamique : instabilité de la production de glutamate en
procédé continu thermo-induit. Mémoire de Doctorat.
Université de Nancy.
· Delaunay S (1999). Etude et modification du
metabolisme central de Corynebacterium glutamicum productrice de
glutamate. Thèse INPL Nancy.
· Demain A L and Birnbaum J (1968). Alteration of
permeability for the release of metabolites from microbial cell. Current
Topics Microbiol. Immunol., 46, 1-25.
· Dominguez H and Lindley N D (1996). Complete Sucrose
Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium
glutamicum To Ensure Phosphorylation of Liberated Fructose. Appl
Environ Microbiol, 62(10), 3878-3880.
· Dominguez H, Nezondet C, Lindley N D and Cocaign M
(1993). Modified carbon flux during oxygen limited growth of
Corynebacterium glutamicum and the consequences for amino acid
overproduction. Biotechnol. Lett, 15, 449-454.
· Du perray F, Jezequel D, Ghazi A, Letellier L and
Shechter E (1992). Excretion of glutamate from Corynebacterium glutamicum
triggered by amine surfactants. Biochim. Biophys. Acta,
1303, 250-258.
· Eggeling L and Sahm H (1999). L-glutamate and
L-lysine: traditional products with impetuous developments. Appl.
Microbiol. Biotechnol., 52, 146-153.
· Elke R B, Bernhard J E, Marcella G and Hermann S
(1993). Glutamate Dehydrogenase is not essential for glutamate formation by
Corynebactenium glutamicum. Appl &Environ Microbiol,
59 (7), 2329-2331.
· Gabriele B, Lars N and Andreas B (2001). Glutamate
synthase of Corynebacterium glutamicum is not essential for glutamate
synthesis and is regulated by the nitrogen status. Microbiology,
147, 2961-2970.
· Gourdon P, Raherimandimby M, Dominguez H,
Cocaign-Bousquet M and Lindley N D (2003). Osmotic stress, glucose transport
capacity and consequences for glutamate overproduction in Corynebacterium
glutamicum. J Biotechnol, 104(1-3), 77-85.
· Greenshield S (1993). Gel production from plant
matter. Brevet WO 93/10158.
· Gruppen H, R J Hamer and A G J Voragen (1992).
Water-unextractable cell wall material from wheat flour. 1. Extraction of
polymers with alkali. Journal of Cereal Science,
16(1),41-51.
· Gunsalus I C and Shuster C W (1961). Energy-yielding
metabolism in Bacteria. The Bacteria, 2, 1-28.
· Hatakeyama K, Hohama K, Vertes A A, Kobayashi M,
Kurusu Y and Yukawa H (1993a). Genomic organization of the biotin biosynthetic
genes of coryneform bacteria : cloning and sequencing of the bioA-bioD genes
from Brevibacterium flavum. DNA Seq,
4,177-84.
· Hatakeyama K, Hohama K, Vertes A A, Kobayashi M,
Kurusu Y and Yukawa H (1993b). Analysis of the biotin biosynthesis pathway in
coryneform bacteria: cloning and sequencing of the bioB gene from
Brevibacterium flavum. DNA Seq, 4, 87-93.
· Hoebler C, Barry J L, David A and Delort-Laval J
(1989). Rapid acid hydrolysis of plant cell wall polysaccharides and simplified
quantitative determination of their neutral monosaccharides by gas-liquid
chromatography. Journal of Agricultural and Food Chemistry,
37(2), 360-367.
· Hromàdkovà Z, Kovàcikovà Z
and Ebringerovà A (2008). Comparison of conventional and
ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran.
Ultrasonics Sonoochemistry, 15(6), 1062-1068.
· Hoseney R C (1986). Principles of Cereal Science and
Technology. St. Paul, MN : AACC. In Marquart, L., Slavin, J. L., & Fulcher,
R. G. (Eds.). Whole Grain Foods in Health and Disease. Chapitre 3, St-Paul,
MN : AACC., pp47-82.
Références bibliographiques
|
|
·
43
Huchenq A, Marquet M, Welby M, Montrozier H, Goma G and
Laneele G (1984). Glutamate excretion triggering mechanism : a reinvestigation
of the surfactant-induced modification of cell lipids. Ann Microbiol ( paris),
pp53-67.
· Hunter J S (1985). Statistical design applied to
product design, J. qual. technol, 17, 201-221.
· Izydorczyk M S, Symons S J and Dexter J E (2002).
Fractionation of wheat and barley. In L. Marquart, J.L. Slavin, & R.G.
Fulcher (Eds.), Whole Grain Foods in Health and Disease. Chapitre 3.
St. Paul, MN : AACC. pp47-82.
· Jutta G, Nicole R, Ulrich F, Julia S and Andreas B
(2009). Modeling and simulation of nitrogen regulation in Corynebacterium
glutamicum. Discrete Applied Mathematics, 157,
2232-2243.
· Kackar N (1985). Off-line quality control, parameter
design and the Taguchi method, J .Quality Technology,
17, 176-188.
· Kanzaki T, Okazaki H, Sugawara A and Fukada H (1967).
L.glutamic acid fermentation. Part IV. The remation between the cellular fatty
acid contents and the productivity of L glutamic acid. Agric Boil
Chem. 31, 1416-1420.
· Kinoshita S and Nakayama K (1978). Amino acid.
In: Rose A. H.(ed.), primary products of metabolism. London,
Academic Press, 209-261.
· Kumagai H (2000). Microbial
Production of Amino Acids in Japan. In: The Natural Functions of Secondary
Metabolites (69), T. Scheper, Éd., Massachusetts,
Springer.
· Lambert C , Erdmann A , Eikmanns M and Kramer R
(1995). Triggering Glutamate excretion in Corynebacterium glutamicum
by Modulating the Membrane State with Local Anesthetics and Osmotic
Gradients. Appl Environ Microbiol, 61, 4334-4342.
· Marcos A, Das N and Toshinori K (29 April 2007) State
of the Art and Future trends of Bioethanol Production , p 4, Japan.
· Maréchal P (2001). Analyse des principaux
facteurs impliqués dans le fractionnement combiné de pailles et
de sons de blé en extrudeur bivis: obtention d'agromatériaux. PhD
thesis, Laboratoire de Chimie Agro-Industrielle - UMR 1010 INRA / INP ENSIACET,
Université de Toulouse. pp 350.
· Mori M and Shiio I (1987). Phosphoenolpyruvate: sugar
phosphotransferase systems and sugar metabolism in Brevibacterium
flavum. Agric. Biol. Chem. 51: 2671-2678.
· Nakamura J, Hirano S, ItoH and Wachi M
(2007).Mutations of the Corynebacterium glutamicum NCgl1221
Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid
Production. Appl Environ Microbiol. 73,
4491-4498.
· Nakao Y , Kikuchi M , Suzuki M and Doi M (1970).
Microbial production of L-glutamic acid from n-parrafin by glycerol auxotrophs.
Agric Boil Chem, 34, 18751876.
· Nandini C D and Salimath P V (2001). Carbohydrate
composition of wheat, wheat bran, sorghum and bajra with good chapati/roti
(Indian flat bread) making quality. Food Chemistry,
73, 197-203.
· Park S Y , Kim H K , Yoo S K , Oh T K and Lee, J K(2000).
Characterization of glk, a gene coding for glucose kinase of
Corynebacterium glutamicum. FEMS Microbiol Lett
188(2), 209-215.
· Peterso D and Fulcher R (2002). Variation in Minnesota
HRS wheats bran content. Journal of Food Science, 67
(1), 67-70.
· Pierre C (2005). Les plans d'expériences partie
1: Principes généraux, Revue: Contrôles- Essais-
Mesure, 69-72.
· Pierre Dagnelie (2008), Le plan d'expérience
évolue, Revue MODULAD, N° 38.
44
Références bibliographiques
· Piot O , Autran J C and Manfait A (2000). Spatial
distribution of protein and phenolic constituents in wheat grain as probed by
confocal Raman microspectroscopy. Journal of Cereal Sciences,
32, 57-71.
· Pomeranz Y (1987). Cereal Crops-General. In:
Pomeranz, Y , (Eds) VCH Publishers, Inc, New York. Modern Cereal Science
and Technology. 14-23.
· Pomeranz Y (1988). Chemical composition of kernel
structures. In Y. Pomeranz (Ed.), Wheat Chemistry and
Technology. St. Paul, MN : American Association of Cereal Chemists. pp
97-118.
· Pyler E J (1988). Baking Science and Technology.
Chicago, IL : Siebel Publishing Company.
· Ralet M C, Thibault J F and Della Valle G (1990).
Influence of extrusion-cooking on the physic-chemical properties of wheat bran.
Journal of Cereal Science, 11, 249-259.
· Raynal-Ioualalen R (1996). Procédé de
fractionnement des sons de blé. Extraction et étude des
propriétés fonctionnelles des arabinoxylanes. PhD thesis,
Laboratoire de Chimie Agro- Industrielle - UMR 1010 INRA / INP ENSIACET,
Université de Toulouse. pp 324.
· Selvendran R R, Ring S G, O'Neill M A and Dupont, M.S
(1980). Composition of cell wall material from wheat bran used in clinical
feeding material. Chemistry and Industry, 22,
885-888.
· Shah A H, Abdul Hameed Ahmed S and Madjid Khan G
(2002). Optimisation of culture conditions for L-Lysine fermentation by
Corynebacterium glutamicum. Online Journal of Biological
Science, 2 (3), 151-156.
· Shibukawa M, Kurima M, Okabe S and Ohsawa T (1968). L-
glutamic acid fermentation with molasses. Part X. On the difference in
mechanisms for the bacterial extracellular accumulation of L-glutamate between
fatty acid derivative and penicillin. Agric. Biol. Chem.
32,641-645.
· Shibukawa M and Ohsawa T (1966). L- glutamic acid
fermentation with molasses. Part VI. Effect of the saturated-unsaturated fatty
acid ratio in the cell membrane fraction on the extracellular accumulation of
L-glutamate. Agric. Biol. Chem. 30, 750758.
· Sommerson N L and Phillips T (1962)..
U.S. Patent, 30, 80-297.
· Stackebrandt, E, Rainey F A and Ward-Rainey N L
(1997). Proposal for a new hierarchal classification system, Actinobacteria
classis nov. Int. J. Syst. Bacteriol. 47, 479-49.
· Steffen N L, Gerd M S, Alexander H, Reinhard K and Volker
F W (2011). Phosphotransferase System-Independent Glucose Utilization in
Corynebacterium glutamicum by Inositol Permeases and Glucokinases.
Applied and Environmental Microbiology, 77(11),
3571-3581.
· Sung-Jin J, Chean R L, Ken'ichiro M and Seiichi T
(2009). Dual production of poly(3-hydroxybutyrate) and glutamate using variable
biotin concentrations in Corynebacterium glutamicum. Journal of Bioscience
and Bioengineering, 107, 409411.
· Takinami K, Yoshii H, Tsuri H and Odaka H (1965).
Biochemical effect of fatty acid and its derivatives on glutamic acid
fermentation. III. Biotintween 60 relationship in the accumulation of
L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric.
Biol. Chem. 29,351-359.
· Takuo H, Ken-ichi H, Hisashi K and Tsuyoshi N (2008).
Changes in Enzyme Activities at the Pyruvate Node in Glutamate-Overproducing
Corynebacterium glutamicum. JOURNAL OF BIOSCIENCE AND BIOENGI NE ERING,
105, 12-19.
45
Références bibliographiques
· Tavakkoli M, Hamidi-esfahani Z and Hossein azizi M
(2009). Optimization of Corynebacterium glutamicum
glutamic acid production by response surface methodology. Food
Bioprocess Technol.
· Tesch M, Eikmanns B J, De Graaf A A net Sahm H (1998).
Ammonia assimilation in Corynebacterium glutamicum and glutamate
dehydrogenase-deficient mutant. Biotechnol. Lett, 20,
953-957.
· Van Soest P J and R H Wine (1968) . The determination
of lignin and cellulose in acid detergent fiber with permanganate .Journal
of the Association of Official Analytical Chemists,
51,780-787.
· Volker F W, Michael B, J·orn K, Marco O et
Wolfgang W (2006). Emerging Corynebacterium glutamicum systems
biology. Journal of Biotechnology, 124, 74-92.
· Wehrmann A , phillipp B , Sahm H et Eggeling L (1998).
Different modes of diaminopimelate synthesisn and their role in cell wall
integrity: a study with Corynebacterium glutamicum. J Bacteriol
180, 3159-65.
· Zeitoun R (2011). Procédés de
fractionnement de la matière végétale - Application
à la production des polysaccharides du son et de la paille de
blé. PhD. thesis, Laboratoire de Chimie Agro-Industrielle - UMR 1010
INRA / INP ENSIACET, Université de Toulouse, pp.
281.
|