1.4 Obtention du p roduit u1 *u 22
~ ? 2 ~
1
u z t u z t
( ) (
, = , - ? -
z T ) exp ~ i t i z
? - ~
1 10 1 1 1
~ 2 ~
=
sec
A1
1
h A t
[ ( - ? - ) ] exp ( ) ~
- ?
~~~ ~ ? + ~~~
1 z T i t A 2 2
1 z
1 1 1 ~~
1
~~ 2
1
( )
, [ ( ) ] exp ~~~ ( )
2 ~
2
~ = sec + ? - ~ - ? +
u z t A h A t z T i t A - ? z ~~
~~~
1 0 ~~
2
u2
|
( z ,t ) = u20
(z,t-n2 z -T 2)
|
exp
|
~ ? 2 ~
~ i t i z
2
? - ~
2
~ 2 ~
|
|
=
sec
A2
1
h A t
[ ( - ? - ) ] exp ( ) ~
- ?
~~~ ~ ? + ~~~
2 z T i t A 2 2
2 z
2 2 2 ~~
2
~~ 2
( ) [ ( ) ] ~ ? + 1
, exp ~~~ ( )
2 ~
2
~ u z t A h A t z T
= sec - ? + i t A - ? z ~~
~~~
2 0 ~~ 2
*
1
u
1
= [ ( ) ] exp ~~~ ( ) ~
2
sec + ? - A
~ ? -
A h A t z T i t - ? 2 z ~~
~~~
0 ~~ 2
u A h [ A ( t z T ) ] { i [
t ( A ) z ] }
2 2 2 2 2
= sec - ? + exp 2 ? + - ?
2 0
~ u
|
* 1
|
u 22
= A
|
3
|
sec
|
1 2
[ ( ) ] [ ( ) ] exp 3
~~~ ( ) ~
2
h A t z T
2 ~ ? +
sec
- ? + h A t z T
+ ? - i t A - ? z ~~~
0 0 ~~ ~~
2
|
*
=
exp
u10
2
u 20
~ ? 2 ~
~ 3 i t i z
? - ~
~2 ~
1.5 Obtention de l'équation (2.34)
- g z u u
( ) *
2
2 1
t
~ ~~ 1J
~ ? 2 ~ ~ ? 2
~ ~ ? 2
~ ~ ~ ? 2 ~
i t
~~ 3 ? - ~~ ~~ ~ ~
z ~~ 3 3
? 2 i t
~~ 3 ? - z i t
? - z
1 ~~ i t
~~ ? - z ~~
2 ~ 2 ~ 2 2
~~
i H e
~ ~ - i He ~ ~ ~ ~
+ H e ~ + ?
3 i He ~
z t
~ 2 ~ 2
~ ~ ~~
~ ~~ ~
1
I
~
~
~
[Htt
+
2
~ ? 2 ~ ~ ? 2
i t
~~ 3 ? - z ~~ ~~ 3 ?
-
? 2 i t z
~ 2 ~ - ~
2
H e i He
z
~ ? 2 ~
i t
~~ 3 ? - z ~~
~ 2 ~
e
+ 6i51H t
2
i
~ ~
~
~
2
-
?
]
e
He
9
~ ? 2 ~
i t
~~ 3 ? - z ~~
~ 2 ~
~ ? 2 ~
i t
~~ 3 ? - z ~~
~ 2 ~
~ ? 2 ~
~~ 3 ? - z ~~
i t
( ) 20 10
2 ~ 2 ~
g
*
z u u e
2
i[3 S2t-
g2 z 2
O n simp lifie p ar e on a :
?
2
iH + 2 2 H +1 [H tt
+ 6i52H t - 9 51 H ]=-g
2
~ iH + z
|
1
2
|
[ H tt +
6i52Ht - 9512 H +
512H] =-g
|
( z
|
)u 2 20
|
*
u 10
|
iH +1 2 [Htt
+ 6i52H t - 8 51 H ]=-g
( 1,2 ,4*
Vz P4'20'10
2
D 'oh. l'équation p our H (
z , t) s'écrit :
1 [ H tt + 6 0-H t - 2(2
51) 2 H ] = - g
2
z u 22 0 u 10 ( 2.34)
iH z +
1.6 Obtention de la relation (2.41)
. 1
( z , co) = f
+.0A3 sec h2 [ A ( t
- + T0 )] sec h[ A (t + -
T 0 )]
expit[352t + (
A2 - n2
)z. Li} ×
2
-
ict
~ ~~ e
dt
+? 1
3
~ ( ) = ~ [ ( - ? + ) ] [ (
sec + ? - ) ] ( )
~ - ?
F z ? A h A t z T
2 h A t z T ~~ i A
2 2
, exp
sec z
0 0
-? 2
1 ~
3
( ) ( ) ~ [ (
+?
2 2 2 -
~ F z = A exp ~
- ?
i A
~~ z ~~ sec h A t
z T
- ? + ) ] [ (
sec h A t z T e dt
i ? t
, ? + ? - ) ]
0 0
2 -?
Posons b = A(t -
52z + T0 ) ' t = +
52z - T 0 dt =
db
A A
2
cT0
db
co
- i Ab-i
aglz+i
A
F( z , co) = A3
exp(i 1 ( A2
-n2)zl+*sech2[
b ] sec h[b+252Az
-2AT0]e -?
?
1 ~
( ) ( ) ~ [ ] [ ( ) ]
i
+? - b
2
~ ? = exp ~ - ? - ?
+
F z A ~~ i A 2 2
?
z i z i T
? ~~ sec h b h b A z T e db
2
, sec + ? -
2 A
0 0
2 -?
Soit A0 = (52z - T0) on
a
?
~ 1 ~ +? - i b
2
( ) ( )
2 - ? - ? +
2 2
F z , ? = A exp ~
i A z i z i T
? ? sec [ ] [
sec 2 ] 2.38
( )
0 ~ h b h b A e A db
+ ? 0
~~
2 -?
~
2
~ ~~×
aT0
Donc
1 z 2
( ) ( ) i
- ? ? = -
? ~ - ? - ? +
1
à , 2
à exp ~~ ( )
2 2
iH H g z e A i A z i z i
z ?
2 2
sec h2[ b ] sec h[b
+ 2 AA0
- i
cob
A
db
] e
~ - ? +
A 2 ~
i
-
COb
A
db
] e
i ~ z ? ?
z T ~
0
( ) ( ) ~ [ ] [
+?
~ ~
? ? = -
? , à sec
2 2 2
H A g z e h b h b A
sec + ?
2 0
-?
~ ? + ? ~ ~
( ? )
- ~
i ? z +?
0 ~ ~ ? 2
~ ~
?? z ( ? ) A 2 ?
n ~ ~ ?
à ~ ~
2 2
H z
( )
, ? ?
= ~ ~
i A e sec h ~ ~ exp ~
~ ' 2 , dz' 2.41
( )
n 0
~ ~
g i + - ~ ~ ?
z I A
~ ~
~ ~
2 A -? 2 2 z A ~
n =-? ~ ~ ~ ~ ~ ~ ~
a
|