Chapitre III
Interprétation des résultats obtenus pour les
systèmes OH-(H2O)n
Comme les calculs d'interaction de configuration pour des
systèmes d'une telle taille sont difficiles à réaliser,
nous avons utilisé les valeurs CCSD(T) comme
référence[124,125].
Nous avons reporté dans les tableaux I, II et III
toutes les composantes des énergies d'interaction à trois et deux
corps de tous les sous systèmes OH-(H2O)2 des
structures décrites dans le chapitre précédent,
obtenues par les différentes méthodes théoriques
utilisées dans nos calculs, excepté les résultats
DFT[125], parce qu'avec cette méthode nous avons
calculé les énergies de la première itération et
les effets à trois corps seulement pour certaines configurations.
Nous avons gardé les mêmes notations que ceux du
chapitre précédent, pour chacune des configurations
OH-(H2O)2 considérée, nous avons :
- kl= <Owk-Oi-Owl : l'angle formé par l'oxygène
de la première molécule d'eau, l'oxygène de l'ion et
l'oxygène de la deuxième molécule d'eau.
- dik=d(Oi-Owk) : distance entre l'oxygène de l'ion et
l'oxygène de la molécule d'eau k. La molécule d'eau
appartient à la deuxième couche de solvatation pour dik >
3Å. -Les numéros des couches une et deux sont notées
respectivement dans les tableaux par :1 et 2.
III.A/ Résultats obtenus avec les configurations
OH-(H2O)2 de la série R et la configuration X2 (Fig. 1,
Tableau I, Graphe I) :
Les deux molécules d'eau dans ces configurations
appartiennent à la première couche de solvatation de l'ion
hydroxyde.
III.A.1/ Variation de l'énergie à trois corps en
fonction de l'angle kl:
L'angle kl de la série R varie de 80 à
1700. L'énergie de la première itération
, croit de façon attractive régulière
avec l'accroissement de l'angle kl, les calculs que nous avons faits sur la
géométrie X2 issue d'un autre procédé
d'optimisation [65] et où l'angle kl est de 115.6° le
confirment.
L'énergie d'interaction à trois corps HF, est
répulsive et décroît quand on
passe d'un angle kl de 80 à 110°, ensuite elle
croît. Pour la configuration X2 elle est
de 3.42 Kcal/mol, presque le double par rapport aux valeurs de
la série R. Si on compare les configurations de la série R avec
la configuration X2, on trouve que, l'orientation des deux molécules
d'eau dans la série R est différente de celles dans la
configuration X2 et surtout les géométries de la série R
et de la configuration X2 ont été obtenues par optimisation au
niveau MP2 en ne prenant pas en considération la correction BSSE et en
utilisant la base aug-cc-pVDZ mais dans la série R on a figé
les
paramètres géométriques des
molécules d'eau et de l'ion aux valeurs expérimentales alors que
le cluster X2 a été obtenu par minimisation complète du
système. Par conséquent dans la configuration X2 les distances
dik sont inférieures à 2.6Å pour les deux
molécules d'eau alors que pour les configurations de la série R,
elles sont toutes supérieures à 2.6Å, les distances d(OH)
des molécules d'eau de la série R sont différentes de
celles de la configuration X2 et les angles des molécules d'eau de la
série R sont aussi différent des angles des molécules
d'eau de la structure X2 (voir les paramètres
géométriques, paragraphes II.A.1 et II.A.2 ). Ceci montre
l'importance des paramètres géométriques, qui est mis en
évidence si on compare les résultats du cluster R110 à
ceux de la configuration X2 dont les angles kl sont respectivement de
110.5° et 115.6°, donc proches.
Pour vérifier quel paramètre
géométrique a le plus influencé sur la variation de
l'énergie, nous avons fait un autre calcul avec la configuration X2 mais
en prenant comme distances OH pour les molécules d'eau, la valeur
expérimentale 0.9572Å et nous avons laissé les autres
paramètres inchangés, le tableau I montre clairement que la
modification de ce paramètre a changé de façon importante
le comportement général des diverses contributions
énergétiques à trois et deux corps. Toutes les valeurs
énergétiques de la configuration X2a convergent vers celles de la
R110. La configuration X2b est déduite de la X2a en modifiant les angles
des molécules d'eau de la X2a, nous leur avons attribué la valeur
expérimentale de 104.5°, les valeurs des énergies obtenues
sont presque les mêmes que celles de la X2a, le changement des valeurs
des angles des molécules d'eau n'a pas eu le même effet que le
changement des distances d(OH) des molécules d'eau, ce paramètre
a un effet beaucoup plus important.
Nous avons calculé l'énergie de déformation
Hartree-Fock, (paragraphe
I.B, équation (45)), nous avons obtenu la même
variation deen fonction de l'angle kl que pour , les énergies sont un
peu plus répulsives et mêmes constatations concernant les
résultats obtenus pour les configurations X2, X2a et X2b.
Les énergies d'interaction à trois corps non
additives obtenues avec les différentes méthodes
théoriques, M P2, M P3, M P4SDQ, CCSD(T) et SAPT sont toutes
répulsives et ont la même variation en fonction de l'angle ab que
(voir graphe I a)
et mêmes observations concernant les calculs faits avec ces
méthodes sur les configurations X2, X2a et X2b.
Fig.1 Structures OH-(H2O)2
a/ Energies à trois corps en Kcal/mol
|
|
|
|
|
Conf.
|
R80
|
R110
|
R140
|
R170
|
X2
|
X2a
|
X2b
|
N° couches
|
1-1
|
1-1
|
1-1
|
1-1
|
1-1
|
1-1
|
1-1
|
kl(°)
|
80.9
|
110.5
|
140.4
|
170.3
|
115.6
|
115.6
|
115.6
|
?
=1
|
-0.34
|
-0.46
|
-0.75
|
-0.90
|
-0.62
|
-0.51
|
-0.52
|
|
2.01
|
1.86
|
1.93
|
1.97
|
3.42
|
2.12
|
2.09
|
|
2.35
|
2.33
|
2.68
|
2.87
|
4.04
|
2.63
|
2.61
|
|
1.70
|
1.52
|
1.58
|
1.61
|
2.86
|
1.69
|
1.67
|
P2 ?
|
|
|
|
|
|
|
|
|
2.24
|
2.03
|
2.08
|
2.11
|
3.60
|
2.28
|
2.25
|
P
|
|
|
|
|
|
|
|
|
1.79
|
1.56
|
1.60
|
1.63
|
2.94
|
1.75
|
1.73
|
MP4
|
|
|
|
|
|
|
|
|
1.97
|
1.74
|
1.78
|
1.81
|
3.17
|
1.94
|
1.91
|
CC
|
|
|
|
|
|
|
|
APT
|
1.79
|
1.59
|
1.70
|
1.78
|
2.95
|
1.77
|
1.75
|
=1+2+3+4+5+6+7
APT
|
|
|
|
|
=2 2.73 2.87 3.67
|
4.37
|
3.47
|
3.17
|
3.13
|
=3 -0.38 -0.54 -0.81
|
-1.50
|
-0.57
|
-0.56
|
-0.52
|
=4 0.18 0.05 -0.02
|
-0.06
|
0.10
|
0.05
|
0.05
|
=5 0.40 0.76 0.99
|
1.15
|
0.92
|
0.87
|
0.86
|
3
|
|
|
|
|
=6 -0.93 -1.12 -1.21
|
-1.28
|
-1.56
|
-1.32
|
-1.30
|
P2 )
|
|
|
|
|
7 0.13 0.04 0.01
|
-0.00
|
0.07
|
0.05
|
0.05
|
PA
|
|
|
|
|
b/ Energies à deux corps en Kcal/mol
|
|
|
|
|
-43.02 -42.56 -40.70
|
-37.11
|
-53.63
|
-44.12
|
-43.79
|
-43.88 -43.02 -41.19
CCS
|
-37.83
|
-53.20
|
-44.38
|
-44.14
|
* kl= <Owk-Oi-Owl *Conf. = Configurations
: diminuent.
et
III.A.2/ Variation des composantes de l'effet à trois
corps en fonction de l'angle kl:
, , ,
P2 ) )
PA
La méthode SAPT nous a permis d'avoir les
différentes composantes de l'énergie à trois corps , , ,
,
) 3 )
(paragraphe I.B, équation (43)), la première
constatation est que l'énergie d'induction au second ordre ,
représente la plus importante contribution énergétique
de
)
l'effet à trois corps non additif, elle est
répulsive, ensuite c'est l'énergie d'échange M P2 ,
elle est attractive. Nous citons les cinq autres termes de l'énergie
P2 )
d'interaction à trois corps par ordre de contribution
énergétique décroissante: l'induction-dispersion au
troisième ordre , répulsive ; les effets d'échange-
3 )
RPA
induction et le terme non additif Heitler-London , sont
attractives et du
même ordre de grandeur; enfin l'échange-dispersion
au second ordre et la
)
dispersion au troisième ordre , sont presque
négligeables.
)
PA
Soient la variations de ces composantes en fonction de l'angle kl
qui augmente :
: croit de façon répulsive, des calculs faits avec
les configurations X2a et X2b,
)
donnent des énergies qui convergent vers les
résultats de la R110 (angle kl = 110.5°). : des valeurs attractives
qui augmentent de façon uniforme sauf pour la
P2 )
structure X2 dont l'angle kl est de 115.6°, l'ordre est
perturbé, des calculs faits avec
les configurations X2a et X2b, donnent des énergies qui
convergent nettement vers les résultats de la R1 10.
|
: croit de manière répulsive, les résultats
obtenus avec les clusters X2a et
|
X2b convergent vers l'énergie de la R1 10.
: des énergies négatives qui croissent en valeurs
absolues, les calculs faits avec les configurations X2a et X2b tendent au
résultat obtenu pour la R1 10.
: contributions énergétiques attractives qui
deviennent de plus en plus importantes, les énergies de la X2a et la X2b
convergent vers la valeur de la R110.
Graphe I
Energies d'interaction : Systèmes OH-(H2O)2
2
a/ Energies à trois corps
b/ Energies à deux corps
III.A.3 / Comparaison des effets à trois corps aux
résultats CCSD(T) :
Les énergies HF convergent bien vers les
résultats CCSD(T) [124]. La théorie de la perturbation
de la symétrie adaptée (SAPT) et la méthode Moller-Plesset
à l'ordre quatre avec excitations simple double et quadruple (MP4SDQ),
donnent des énergies presque identiques, qui se rapprochent beaucoup des
résultats CCSD(T), les valeurs SAPT sont légèrement
meilleures. Les résultats MP2 et MP3 tendent aussi vers les valeurs
CCSD(T) [124]. Sur le graphe I a), on voit que les courbes M P4 et
Sapt sont presque confondues, les meileurs résultats sont ceux des
méthodes HF et SAPT.
|