Bibliographie
Abrams, P.A., & Roth, J.D. 1994. The Effects of Enrichment of
Three-Species Food Chains with Nonlinear Functional Responses. Ecology,
75(4), 1118-1130.
Allen, J.C., Schaffer, W.M., & Rosko, D. 1993. Chaos reduces
species extinction by amplifying local-population noise. Nature,
364, 229-232.
Becks, L., Hilker, F.M., Malchow, H., Jürgens,
K., & Arndt, H. 2005. Experimental demonstration of chaos in a microbial
food web. Nature, 435, 1226-1229. .
Boero, F., Belmonte, G., Bussotti, S., Fanelli, G.,
Fraschetti, S., Giangrande, A., Gravili, C., Guidetti, P., Pati, A.,
Piraino, S., Rubino, F., Saracino, O.D., Schmich, J., Terlizzi, A., &
Geraci, S. 2004. From biodiversity and ecosystem functioning to the roots of
ecological complexity. Ecological Complexity, 1(2),
101-109.
Cann, K. Mc, & Yodzis, P. 1995. Bifurcation structure of a
three-species food chain model. Theoretical population biology,
48, 92-125.
Caswell, H., & Neubert, M.G. 1998. Chaos and closure terms in
plankton food chain models. Journal of Plankton Research,
20(9), 1837-1845.
Cunningham, A., & Nisbet, R.M. 1983. Transients
and oscillations in continuous culture. Mathematical Methods in
Microbiology, 77-103.
Dent, V.E., Bazin, M.J., & Saunders, P.T. 1976. Behaviour
of dictyostelium discoideum amoebae and Escherichia coli grown together in
chemostat culture. Archives of Microbiology, 109(1-2),
187-194.
Droop, M.R. 1973. Some thoughts in nutrient limitation
Algae. Journal of Phycology, 9, 264-272.
Englund, G., & Moen, J. 2003. Testing models of
trophic dynamics : The problem of translating from model to nature.
Austral Ecology, 28(1), 61-69.
FErrIérE, R., & GattO, M. 1993. Chaotic population
dynamics can result from natural selection. Proc. R. Soc. Lond. B,
251, 33-38.
FuSSmann, G.F., & BlaSIuS, B. 2005. Community response to
enrichment is highly sensitive to model structure. Biology letters,
1, 9-12.
FuSSmann, G.F., EllnEr, S.P., ShErtZEr, K.W., & HaIrStOn,
N.G. 2000. Crossing the Hopf Bifurcation in a Live Predator-Prey System.
Science, 290, 1358-1360.
GraGnanI, A., FEO, O. DE, & RInaldI, S. 1998. Food Chains
in the Chemostat : Relationships Between Mean Yield and Complex Dynamics.
Bulletin of mathematical biology", 60, 703-719.
HaStInGS, A. 2001. Transient dynamics and persistence of
ecological systems. Ecology Letters, 4, 215-20.
HaStInGS, A., HOm, C.L., EllnEr, S., TurChIn, P., &
GOdfraY, H.C. J. 1993. Chaos in Ecology : Is Mother Nature a strange attractor?
Annual Review of Ecology and Systematics, 24,
1-33.
JESSuP, C.M., FOrdE, S.B., & BOhannan, B.J.M. 2005.
Microbial Experimental Systems in Ecology. Advances in ecological research,
37, 273-300.
KOOI, B.W., & HanEGraaf, P.P.F. 2001. Bi-trophic Food
Chain Dynamics with Multiple Component Populations. Bulletin of
mathematical biology, 63, 271-299.
KOOI, B.W., & KOOijman, S.A.L.M. 1994a. Existence and
Stability of Microbial Prey-Predator Systems. Journal of theoretical
biology, 170, 75-85.
KOOI, B.W., & KOOijman, S.A.L.M. 1994b. The transient
behaviour of food chains in chemostats. Journal of theoretical biology,
170, 87-94.
KOOI, B.W., BOEr, M.P., & KOOijman, S.A.L.M. 1997. Complex
dynamic behaviour of autonomous microbial food chains. Journal of
mathematical biology, 36, 24-40.
KOOI, B.W., BOEr, M.P., & KOOijman, S.A.L.M. 1998. On the
use of the logistic equation in models of food chains. Bulletin of
mathematical biology, 60, 231-246.
KOOijman, S.A.L.M. 2000a. Dynamic Energy and Mass Budget in
Biological Systems. Second edition edn. Cambridge University Press.
Kooijman, S.A.L.M. 2000b. Quantitative aspects of metabolic
organization : a discussion of concepts. Philosophical Transactions of the
Royal Society B : Biological Sciences, 356(1407), 331-
349.
Mangel, M., & TIer, C. 1993. A Simple Direct
Method for Finding Persistence Times of Populations and Application to
Conservation Problems. PNAS, 90(3), 1083-1086.
MaY, R.M. 1974. Biological populations with nonoverlapping
generations : stable points, stable cycles, and chaos. Science,
186, 645-647.
MCCaUleY, E., NIsbet, R.M., MUrdoCh, W.W., de Roos, A.M.,
& GUrneY, W.S.C. 1999. Large-amplitude cycles of Daphnia and its algal prey
in enriched environments. Nature, 402, 653-656.
Monod, J. 1942. Recherches sur la croissance
bactériennes. Paris : Hermann.
NIsbet, R.M., MUller, E.B., LIKa, K., & Kooijman, S A.L.M.
2000. From molecules to ecosystems through dynamic energy budget models.
Journal of Animal Ecology, 69(6), 913-926.
PetroVsKII, S., LI, B.-L., & MalChoW, H. 2004. Transition
to spatiotemporal chaos can resolve the paradox of enrichment. Ecological
Complexity, 1(1), 37-47.
PIrt, S.J. 1965. The maintenance energy of bacteria in growing
cultures. Proc. R. Soc. Lond. B, 163, 224-231.
PoUVreaU, S., BoUrles, Y., LefebVre, S., & AlUmno-BrUsCIa,
M. 2006. Application of a dynamic energy budget model to the Pacific oyster,
Crassostrea gigas, reared under various environmental conditions. Journal
of Sea Research, 56(2), 156-167.
RInaldI, S., & De Feo, O. 1999. Top-predator abundance and
chaos in tritrophic food chains. Ecology Letters, 2,
6-10.
RosenZWeIg, M.L. 1971. Paradox of Enrichment :
Destabilization of Exploitation Ecosystems in Ecological Time. Science,
171(Jan.), 385-387. .
RosenZWeIg, M.L., & MaCArthUr, R.H. 1963.
Graphical representation and stability conditions of predator-prey
interactions. American Naturalist, 97, 209- 223.
Solé, R.V., & Gamarra, J.G.P. 1998. Chaos, Dispersal
and Extinction in Coupled Ecosystems. Journal of Theoretical Biology,
193, 539-541.
TOlla, C. 2006. Modelling microbial populations in variable
environments. Ph.D. thesis, Institute of the molecular and Cellular
Biology, Vrije Universiteit.
TUrChIn, P., & Ellner, S.P. 2000. Living on the edge of
chaos: Population dynamics of Fennoscandian voles. Ecology,
81, 3099-3116.
VerhUlSt, P.-F. 1838. Notice sur la loi que la population suit
dans son accroissement. Correspondance mathe'matique et physique,
Tome X, 113-121.
VOlterra, V. 1931. Leçon sur la the'orie mathe'matique
de la lutte pour la vie. Paris : Gauthier-Villars.
|
|