WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Enrichissement du milieu et persistance des espèces dans les cha??nes trophiques : apport de la théorie DEB

( Télécharger le fichier original )
par Ismael Bernard
Université Aix-Marseille II - Master 2 Biologie et Ecologie Marines 2007
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

Abrams, P.A., & Roth, J.D. 1994. The Effects of Enrichment of Three-Species Food Chains with Nonlinear Functional Responses. Ecology, 75(4), 1118-1130.

Allen, J.C., Schaffer, W.M., & Rosko, D. 1993. Chaos reduces species extinction by amplifying local-population noise. Nature, 364, 229-232.

Becks, L., Hilker, F.M., Malchow, H., Jürgens, K., & Arndt, H. 2005. Experimental demonstration of chaos in a microbial food web. Nature, 435, 1226-1229. .

Boero, F., Belmonte, G., Bussotti, S., Fanelli, G., Fraschetti, S., Giangrande, A., Gravili, C., Guidetti, P., Pati, A., Piraino, S., Rubino, F., Saracino, O.D., Schmich, J., Terlizzi, A., & Geraci, S. 2004. From biodiversity and ecosystem functioning to the roots of ecological complexity. Ecological Complexity, 1(2), 101-109.

Cann, K. Mc, & Yodzis, P. 1995. Bifurcation structure of a three-species food chain model. Theoretical population biology, 48, 92-125.

Caswell, H., & Neubert, M.G. 1998. Chaos and closure terms in plankton food chain models. Journal of Plankton Research, 20(9), 1837-1845.

Cunningham, A., & Nisbet, R.M. 1983. Transients and oscillations in continuous culture. Mathematical Methods in Microbiology, 77-103.

Dent, V.E., Bazin, M.J., & Saunders, P.T. 1976. Behaviour of dictyostelium discoideum amoebae and Escherichia coli grown together in chemostat culture. Archives of Microbiology, 109(1-2), 187-194.

Droop, M.R. 1973. Some thoughts in nutrient limitation Algae. Journal of Phycology, 9, 264-272.

Englund, G., & Moen, J. 2003. Testing models of trophic dynamics : The
problem of translating from model to nature. Austral Ecology, 28(1), 61-69.

FErrIérE, R., & GattO, M. 1993. Chaotic population dynamics can result from natural selection. Proc. R. Soc. Lond. B, 251, 33-38.

FuSSmann, G.F., & BlaSIuS, B. 2005. Community response to enrichment is highly sensitive to model structure. Biology letters, 1, 9-12.

FuSSmann, G.F., EllnEr, S.P., ShErtZEr, K.W., & HaIrStOn, N.G. 2000. Crossing the Hopf Bifurcation in a Live Predator-Prey System. Science, 290, 1358-1360.

GraGnanI, A., FEO, O. DE, & RInaldI, S. 1998. Food Chains in the Chemostat : Relationships Between Mean Yield and Complex Dynamics. Bulletin of mathematical biology", 60, 703-719.

HaStInGS, A. 2001. Transient dynamics and persistence of ecological systems. Ecology Letters, 4, 215-20.

HaStInGS, A., HOm, C.L., EllnEr, S., TurChIn, P., & GOdfraY, H.C. J. 1993. Chaos in Ecology : Is Mother Nature a strange attractor? Annual Review of Ecology and Systematics, 24, 1-33.

JESSuP, C.M., FOrdE, S.B., & BOhannan, B.J.M. 2005. Microbial Experimental Systems in Ecology. Advances in ecological research, 37, 273-300.

KOOI, B.W., & HanEGraaf, P.P.F. 2001. Bi-trophic Food Chain Dynamics with Multiple Component Populations. Bulletin of mathematical biology, 63, 271-299.

KOOI, B.W., & KOOijman, S.A.L.M. 1994a. Existence and Stability of Microbial Prey-Predator Systems. Journal of theoretical biology, 170, 75-85.

KOOI, B.W., & KOOijman, S.A.L.M. 1994b. The transient behaviour of food chains in chemostats. Journal of theoretical biology, 170, 87-94.

KOOI, B.W., BOEr, M.P., & KOOijman, S.A.L.M. 1997. Complex dynamic behaviour of autonomous microbial food chains. Journal of mathematical biology, 36, 24-40.

KOOI, B.W., BOEr, M.P., & KOOijman, S.A.L.M. 1998. On the use of the logistic equation in models of food chains. Bulletin of mathematical biology, 60, 231-246.

KOOijman, S.A.L.M. 2000a. Dynamic Energy and Mass Budget in Biological Systems. Second edition edn. Cambridge University Press.

Kooijman, S.A.L.M. 2000b. Quantitative aspects of metabolic organization : a discussion of concepts. Philosophical Transactions of the Royal Society B : Biological Sciences, 356(1407), 331- 349.

Mangel, M., & TIer, C. 1993. A Simple Direct Method for Finding Persistence Times of Populations and Application to Conservation Problems. PNAS, 90(3), 1083-1086.

MaY, R.M. 1974. Biological populations with nonoverlapping generations : stable points, stable cycles, and chaos. Science, 186, 645-647.

MCCaUleY, E., NIsbet, R.M., MUrdoCh, W.W., de Roos, A.M., & GUrneY, W.S.C. 1999. Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature, 402, 653-656.

Monod, J. 1942. Recherches sur la croissance bactériennes. Paris : Hermann.

NIsbet, R.M., MUller, E.B., LIKa, K., & Kooijman, S A.L.M. 2000. From molecules to ecosystems through dynamic energy budget models. Journal of Animal Ecology, 69(6), 913-926.

PetroVsKII, S., LI, B.-L., & MalChoW, H. 2004. Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecological Complexity, 1(1), 37-47.

PIrt, S.J. 1965. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B, 163, 224-231.

PoUVreaU, S., BoUrles, Y., LefebVre, S., & AlUmno-BrUsCIa, M. 2006. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research, 56(2), 156-167.

RInaldI, S., & De Feo, O. 1999. Top-predator abundance and chaos in tritrophic food chains. Ecology Letters, 2, 6-10.

RosenZWeIg, M.L. 1971. Paradox of Enrichment : Destabilization of Exploitation Ecosystems in Ecological Time. Science, 171(Jan.), 385-387. .

RosenZWeIg, M.L., & MaCArthUr, R.H. 1963. Graphical representation and stability conditions of predator-prey interactions. American Naturalist, 97, 209- 223.

Solé, R.V., & Gamarra, J.G.P. 1998. Chaos, Dispersal and Extinction in Coupled Ecosystems. Journal of Theoretical Biology, 193, 539-541.

TOlla, C. 2006. Modelling microbial populations in variable environments. Ph.D. thesis, Institute of the molecular and Cellular Biology, Vrije Universiteit.

TUrChIn, P., & Ellner, S.P. 2000. Living on the edge of chaos: Population dynamics of Fennoscandian voles. Ecology, 81, 3099-3116.

VerhUlSt, P.-F. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondance mathe'matique et physique, Tome X, 113-121.

VOlterra, V. 1931. Leçon sur la the'orie mathe'matique de la lutte pour la vie. Paris : Gauthier-Villars.

précédent sommaire suivant






Extinction Rebellion







Changeons ce systeme injuste, Soyez votre propre syndic



"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway