1.2.3 Hölder Properties of Two-parameter fbm
We fix á = (á1, á2), ái ? (0,1] and
let T = [a1, b1] × [a2, b2]. Let f the Riemann-Liouville fractional
integral of order á i.e
1
,
(Iáa+f)(x1, x2) = f(t1
t2)dt1dt2, x1x2) ? T
(á1)(á2) a1 a2 (x1 t1)1-á1 (x2 -
t2)1-á2
x1
I
x2
The space Ëá,p =
(Iáa+)(Lp(T)) is called the Liouville
space (or Besov space) and it becomes separable Banach space with respect to
the norm IIáa+fIá,p = If1p
Proposition 1.2.3.1. [7] For every á, â
Iá a+Iâ a+=
Iá+â
a+ ,
If f ? C2b (T) and f = 0 on ?1T = ([a1,b1]
× {b1}) ? ({a1} × [a2,b2])then the function
1 1x1 r2 a2f (t1, t2) dt1dt2
+f (x1, x2) =
(1 - á1)(1 - á2) L1 Ja2
?t1?t2 (x1 - t1)á1(x2 - t2)á2
(1.2)
is the unique function from L8(T) such that
Iáa+Dáa+f
= f.
For a rectangle D = [s1, t1] × [s2, t2] ? T we define the
increment on D of the function f : T ? IR by
f(D) = f(t1, t2) - f(t1, s2) - f(s1, t2) + f(s1,
s2).
We denote by C[ai,bi],ái the space of all
ái-Hölder functions on [ai, bi] and
kfk[ai,bi],ái = sup
u6=v,ai<u,v<bi
|
|f(u) - f(v)|
(u - v)ái .
|
Also, we denote by CT,á1,á2 the space of
all (á1, á2)-Hölder functions on T, i.e., f ?
CT,á1,á2 if f is continuous,
kf(a1, .)1[a2,b2],á2 < 8, 1f(., a2)I[a1,b1],á1
< 8
and
|f([u1, v1] × [u2, v2])|
< 8.
|u1 - v1|á1|u2 - v2|á2
1fkT,á1,á2 = sup
ui6=vi
Proposition 1.2.3.2. [8] Let 0 < â1 < á1,0
< â2 < á2 and p = 1. Then we have the continuous
inclusions Ëá,p ? Ëâ,p,
Ëá,p ?
Cá1_p-1,á2_p-1, Câ1,â2 ?
Ëã,p if áip > 1, âi > ãi > 0
ici il faut tout d'abord définir la fonction
généralisé
Proposition 1.2.3.3. [8] Assume that f, g are
C1([a, b])-function with f(a) = 0. Let á, â ?
(0,1] be such that á+â > 1 and let ä := {a = t0 < ...
< tn = b} be a partition of [a, b] with the norm
1ä1 = max (tj+1 - tj). Then for every
j
0 < å < á + â - 1 the following
estimates hold:
~~~~
|
fb
f(t)dg(t)~~~~ = C(á,
â)1fk[a,b],álgk[a,b],â(b - a)1+å, (1.3)
a
|
If b
~
f (t)dg(t) - E f(ti)[g(ti+1) - g(ti)]~= C(á,
â)1f1[a,b],á1g1[a,b],â(b-a)å.
~
i
(1.4)
14 1.2.3 Hölder Properties of Two-parameter fbm
|