WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Equations differentials stochastics involving fractional brownian motion two parameter

( Télécharger le fichier original )
par Iqbal HAMADA
Université de SaàŻda - Master 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Chapter 2

Stochastic Integration with

Respect to Two-parameter

Fractional Brownian Motion

2.1 Pathwise Integration in Two-parameter Besov Spaces

The next result gives an estimate of the Stieltjes integral for smooth functions in terms of Hölder norms and represents the essential step for extending the Stieltjes integral to Hölder functions of two variables.

Proposition 2.1.1. Let ái + âi > 1, ái, âi ? (0, 1], f, g ? C2(T) and let 0 < åi < ái + âi - 1. Then

i

~~~~

b1lb2 f (t1,t2)dg(t1,t2) a1 L

(2.1)

= C(ái, âi)kgkT,â1,â2 {1f1T,á1,á2(b1 - a1)á1+â1(b2 -a2)á2+â2 +1f(., a2) [a1,b1],á1(b1 - a1)1+å1(b2 - a2)â2

+1f(a1, .) [a2,b2],á2(b1 - a1)â1(b2 - a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 - a2)â2}

Moreover, for every partition Ä = (si, tj)i,j, a1 = s1 < ... < sn1 = b1, a2 = t1 < ... < tn2 = b2, 1Ä1 = max(si+1 - si) + max(tj+1 - tj) , we have

i j

b1

f

b2 n1-1n2-

1

f(

74

,u2)dg(u1,u2) -

E E f(si, tj)g ([sisi+1] × [tj, tj+1])

fa1 a2 i=1

j

=1

(2.2)

+ ~kgkT,â1,â2 + kg(a1, .)k[a2,b2],â2kÄká1~ = C(ái, âi)kfkT,á1,á2 ~kgkT,â1,â2kÄká1+â1+á2+â2?2

+ (1g1T,â1,â2 + kg(., a2)1[a1,b1],â11Älá2)] .

Proof. Assume first that f = 0 on ?1T and define

h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2)

-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2). (2.3)

Then

Z b1 Z b2 f(t1, t2)?2g(t1, t2) dt1dt2 = ?2(f * h)(b1, b2) . ?t1?t2 ?t1, ?t2

a1 a2

Choose åi > 0, 0 < á0i < ái, 0 < â0 i < âi with á0i + â0 i = 1 + åi. By proposition the function f1 = Daá+' f, h1 = Daâ+' h are in L8 and satisfy

Iá0 = f , Iaâ+" h1 = h. (2.4)

Then by proposition, 2.3 and 2.4 we have

Z b1 Z b2 Z b1 Z b2 f(t1, t2)?2g(t1, t2)

f(t1, t2)dg(t1, t2) = dt1dt2

?t1?t2

a1 a2 a1 a2

?2(f * h)(b1, b2)

=

?2

h i

Iá0

a+f1 * Iâ0

a+h1 (b1, b2)

?t1?t2

=

?t1?t2

?2 hi

Iá00

= a+ (f1 * h1) (b1, b2)

?t1?t2

?2 ~I1

= a+Iåa+(f1 * h1)] (b1, b2)

?t1?t2
?2

= Iå a+(f1 * h1)(b1, b2),

?t1?t2

= Ia(+ 1,1), å=

such that Ia1+ Iå1,å2

a+

and then

~Z

kf1 * h1k8

(b1 - a1)1+å1(b2 - a2)1+å2

= å1å2(å1)(å2) kf1k8kh1k8.

~Z b2 b1 ~~~~ = (b1 - a1)å1(b2 - a2)å2
~~ f(t1, t2)dg(t1, t2) å1å2(å1)(å2)
a1 a2

Next, the integration by parts for functions of two variables (see[9]) yields

f1(x1, x2) = (1 - á'o(1 - á'2) fa x

, " (1 - t1 )á 4 (x2 - t2)á4

1

r

2df ([t1,x1]× [t2,x2])

1 f ([t1,x1] × [t2, x2]) lim (1 ? áo(1 ? t%?x% (x1 - t1)á4 (x2 - t2)á4

lirn

x1 f ([t1, x1] [t2, x2]),

- dt1
t2?x2 fa1 (x1 t1)á1 (x2 - t2)á2

x2 f ([t1, x1] × [t2, x2]) dt

lim

-

t1?x1 L2 (x1 t1)á4 (x2 - t2)á2 2

f2 f ([t1,x1] × [t2, x2])

a1 a2 (xi - t1)á4+1(x2 - t2)á2+1

, dt1dt2}

+ác.á02

,0

á1u2 ix2 f ([t1,x1] × [t2, x2])

t, d dt
(1 - áo(1 - ja2x1-t1)á4+1(x2 t2)á2+1

i 2,

so that

kf1k8 =

,0

á1u2

(1 ? ác)(1 ? T,á1,á2

(2.6)

x1 fx2

× (x1 - t1 -á4-1 (x2 - t2)á2-á4-1dt1dt2

a2

= - a1)á1-á4(b2 - a2)á2-á4.

Similary

- a1)â1-âc(b2 - a2)â2-â. (2.7)

By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on ?1T. If f is not necessarily null on ?1T then we define

f(t1,t2) = f ([a1,× [a2, t2])

Then f = 0 on ?1T and f, f have the same increments. Then we have

J b1 1b2

a2 f (t1,t2)?2 g(t1 t2)

?t1?t 2 dt1dt2

Z b1 Z b2 Z b1 Z b2

f(t1, t2)?2g(t1, t2) f(a1, t2)?2g(t1, t2)

= dt1dt2 + dt1dt2

?t1?t2 ?t1?t2

a1 a2 a1 a2

+ fa1 a2

b1

f

b

2

f(t1, a2)?2g(t1,

?t1?t2

t2) dt1dt2 + f (a1, a2)g(([a1,b1]× [a2, b2]))

,,

= I2 b2 f (t1,t2)?2 g(t1, t2)

dt1dt2 + b2 f(a1, t2) r?g(b1 t2) ?g(a1 ?t2 ?t2

t2) 1 dt2

a1 ?t1?t2

a2

a

?g(t1,b2) ? g(t1, a2)1 dt1 + f (a1, a2)g(([a1,b1]×[a2, b2])

f21 b1 f(t1a2) [ ?t1

4

 

Jk.

k=1

(2.8)

From the previous reasoning we have

ja1 b1 la:2 f (t1, t2) ?2g(t1 , t2)

dt1dt2

?t1?t2

= C(ái,âi)kfkT,á1,á2kgkT,â1,â2(b1 - a1)á1+â1(b2 - a2)á2+â2. (2.9)

Next by using (1.3) we have

~~Z b2 ~?g(b1, t2) ~

|J2| =

- ?g(a1, t2) ~~~~

~~ [f(a1, t2) - f(a1, a2)] dt2

?t2 ?t2

a2

+ |f(a1, a2)g ([a1, b1] × [a2, b2])|

= C(ái, âi) kf(a1, .)1[a2,b2],á2kg(b1,.) - g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2

+ |f(a1, a2)| 1g1T,â1,â2(b1 - a1)â1(b2 - a2)â2,

so that

11 J2 11= C(ái, âi)11g1IT,â1,â2 { If(a1, .)1[a2,b2],á2 (b1 - a1)â1(b2 - a2)1+å2 + | f (a1, a2)| (b1 - a1)â1(b2 - a2)â2 1.

(2.10)

Similarly

n11J311 = C(ái, âi)1g1T,â1,â2 If(., a2)1[a1,b1],á1 (b1 - a1)1+å1(b2 - a2)â2 +|f(a1, a2)| (b1 - a1)â1 (b2 - a2)â2}.

(2.11)

Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we have

a1 (12

IÄ f (u1,u2)dg(u1, u2) - E f (si,tj)g ([sisi+1] ×

= Ib1 b2

f

=E

[f(u1, u2) - f(si,tj)] dg(u1, u2)

i,j

=E

i,j

isi+1 itj+1

+E

+E

jsi+1 itj+1

jsi+1 itj+1

[f(u1,u2) - f(u1, tj) - f(si,u2) + f(si,tj)] dg(u1, u2) [f(u1, tj) - f(si,tj)] dg(u1, u2)

i,j t
·

isi+1 itj+1

8i 3 [f(si, u2) - f(si,tj)] dg(u1, u2)

= Ä + I,26,

(2.12)

From (2.1) it follows that

|I1Ä| = C1f11T,á1,á2110T,â1,â2E

i,j

(si+1 - si)á1+â1(tj+1 - tj)á2+â2

(2.13)

 

I2Ä =E

i

Z b1

,j Xtj)1 (u1, tj) [? g(u1, tj+1) ?g(u1,du1

?u1 ?u1

a1 j

1si+1 ftj+1

Jsi[f (u1,tj) f (si, tj)]

3

?u1?u2

?2g(u1, u2) du1 du2

t
·

i,j [f(u1, tj) - f (si,tj)]

[?g(u?1u,t1 j+1) ?g(u1,tj)1 du1

?u1

1s i +1

C11fkT,á1,á2kgkT,â1,â2MÄ1á1+â1+á2+â2-2.

Next define

f1(u1, u2) = f(u1, u2) - f(si, u2) ifu1 ? [si, si+1).

Then (1.3),(1.4) imply

b1

I1 = C 11g(ui ) 11

fl (U1, -) 11 [a2,b2],á2 [a2 ,b2],â2 du1. (2.14)

a1

Since u1 ? [si, si+1) we have

If1(u1,.)1[a2,b2],á2 = 1f1T,á1,á2 (u1 - si)á1 = 1f1T,á1,á2 IÄIá1

and

Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1 kg1T,â1,â2 + 1g(a1, .)1[a2,b2],â2 (2.15)

It follows by replacing in (2.14) that

11I2Ä11 = C111f11T,á1,á211Ällá1 (11g11T,â1,â2 + 11g(a1,.)11[a2,b2],â2) . (2.16)

Similarly

11I3Ä11 (11g4,â1,â2 + 11g(.,a2)11[a1,b1],â1) . (2.17)

Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).

Next we define CT,á1,á2,8 the space CT,á1,á2 endowed with the norm

1x1T,á1,á2,8 = 1x1T,á1,á2+ sup

a1=t1=b1

1x(t1, .)I[a2,b2],á2+ sup

a2=t2=b2

kx(.,t2) [a1,b1],á1+1x T,á1,á2.

 

f (u, v)dg(u, v) f - a1)â1(b2 - a2)â2.

~

.fb1 b2

a

2

The space (CT,á1,á2,8,1.1T,á1,á2,8) is a Banach space.

The convergence of Riemann-Stieltjes sums to the integral for Hölder functions of one variable in shown in [[8],[10],[11]]. The corresponding result for functions of two variables is given in the next theorem.

Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] × [a2 - å0, b2 + å0], å0 > 0, and let á1, á2, â1, â2 ? (0, 1] be such that ái + âi > 1. If f ? CT0,á1,á2, g ? CT0,â1,â2, then there exists a unique real number fb2

a

1

a

2

every sequence of partitions Än = (sni ,tnj ), a1 = s0 < ... < sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with 1Än1 ? 0, the Riemann-Stieltjes sums

f(u,v)dg(u,v) such that for

Sog= E

i

X(EsTi i,s7+1 ] × Etrj i,t7+1])

j

 

b2

converge to f

f(u,v)dg(u,v). Moreover, the following estimate holds:

a

1

a

2

Proof. It is enough to prove that for every ä > 0 there exist ç > 0 such that for every two partitions (Äi)i=1,2, ai = ui0 < ... < uim(i) = bi with kÄik < ç we have

~~~Sf,g

Ä1- Sf,g ~~~ = ä. (2.19)

Ä-2

Let J ? C8(R2) be such that J = 0, J(x) = 0 if 114 = 1 and Iand define

R2

Jå(x) = å-2J (x). Consideer the regularizations of få, gå of f,g. Recall that å

få(x) =R 2 Jå(x - y)f (y)dy = f(x - åy)J(y)dy,
and for gå similarly (as usual f,g are extended as 0 on R2 \ T0). It is well
known that få ?f, gå ? g uniformly on T . Also it is easily seen that

(2.20)

få ? CT,á1,á2, gå ? CT,â1,â2.

Next we show that if 0 < á0i < ái, 0 < â0 i < âi, then

få ? f in CT,á0 gå ? g in CT,â0

1,á0 2, 1,â0 2,

få(a1, .) ? f(a1, .) in C[a2,b2],á02,

gå(a1, .) ? g(a1,.) in C[a2,b2],â02, (2.21)

få(., a2) ? f(., a2) in C[a1,b1],á'1,

gå(., a2) ? g(., a2) in C[a1,b1],â01. (2.22)

We have

(få - f) ([s1, t1] × [s2, t2])

Z

= J(u, v) {f ([s1 - åu, t1 - åu] × [s2 - åv, t2 - åv])}

B(0,1)

-f ([s1, t1] × [s2, t2]) dudv,

and then for every å,ä > 0,

sup

si6=ti

|(få - f) ([s1,t1] × [s2, t2])|

2

|s1 - t1|á0 1|s2 - t2|á0

= sup

~

~|(få - f) ([s1, t1] × [s2, t2])|

2 , |si - ti| > ä, i = 1, 2

|s1 - t1|á0 1|s2 - t2|á0

 

~|(få - f) ([s1, t1] × [s2, t2])|

+ sup

2 , |s1 - t1| > ä or |s2 - t2| > ä

|s1 - t1|á0 1|s2 - t2|á0

1

= sup {|f(u1, v1) - f(u2, v2)| , |ui - vi| < å, ui, vi ? T0, i = 1, 2}

äá0 1+á0 2

+CkfkT,á1,á2 max(äá1-á0 1, äá2-á0 2) ? 0 as å ? 0, ä ? 0.

Similarly one prove(2.21),(2.22).

Next we choose 0 < á0i < ái, 0 < â0 i < âi with á'i + â0 i > 1. Then from (2.20),(2.22) and (2.12) we obtain

~~~~~ + ~~~Sf,g

~Sf,g

Ä1 - Sf,g ~~~ = ~~~Sf,g

Ä1 - Sfå,gå Ä2 - Sfå,gå ~~~

Ä2 Ä1 Ä2

ib1 fa2 b2 b1 fb2

Qfål,gå

"Ä fådgå +Sk2 gå -

faa

1 1

a

2

+

~~

fådgå ~~

lim

å?

H

0

b1 fb2 b1 fb2

fådgå =

f dg,

1

1

12

2

1

1

I

~~~~~ + ~~~Sf,g = ~Sf,g

Ä1 - Sfå,gå Ä2 - Sfå,gå ~~~

Ä1 Ä2

~ n 10 20 2-2

+C ~kfåkT,á0 1,á0 2 + kgåkT,â0 (kÄ1k + kÄ2k)á0 1+â0

1,â0 2

2o

+ (kÄ1k + kÄ2k)á0 1 + (kÄ1k + kÄ2k)á0

~~~~~ + ~~~Sf,g = ~Sf,g

Ä1 - Sfå,gå Ä2 - Sfå,gå ~~~

Ä1 Ä2

n

1

+ C1 (kÄ1k + kÄ2k)á0 10 10 20 2-2 + (kÄ1k + kÄ2k)á0

+ (MÄ1M + 1Ä21)á02/ ? 0, as å ? 0 and then IÄiI ? 0. The previous computation also shows that

2.2 Some Additional Properties 23

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Le don sans la technique n'est qu'une maladie"