Chapter 2
Stochastic Integration with
Respect to Two-parameter
Fractional Brownian Motion
2.1 Pathwise Integration in Two-parameter Besov
Spaces
The next result gives an estimate of the Stieltjes integral
for smooth functions in terms of Hölder norms and represents the essential
step for extending the Stieltjes integral to Hölder functions of two
variables.
Proposition 2.1.1. Let ái + âi > 1, ái,
âi ? (0, 1], f, g ? C2(T) and let 0 < åi
< ái + âi - 1. Then
i
~~~~
b1lb2 f (t1,t2)dg(t1,t2) a1 L
(2.1)
= C(ái, âi)kgkT,â1,â2
{1f1T,á1,á2(b1 - a1)á1+â1(b2
-a2)á2+â2 +1f(., a2) [a1,b1],á1(b1 -
a1)1+å1(b2 - a2)â2
+1f(a1, .) [a2,b2],á2(b1 - a1)â1(b2 -
a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 -
a2)â2}
Moreover, for every partition Ä = (si, tj)i,j, a1
= s1 < ... < sn1 = b1, a2 = t1 < ... < tn2 = b2,
1Ä1 = max(si+1 - si) + max(tj+1 - tj) , we have
i j
b1
f
b2 n1-1n2-
1
f(
74
,u2)dg(u1,u2) -
E E f(si, tj)g ([sisi+1] × [tj, tj+1])
fa1 a2 i=1
j
=1
(2.2)
+ ~kgkT,â1,â2 + kg(a1,
.)k[a2,b2],â2kÄká1~ = C(ái,
âi)kfkT,á1,á2
~kgkT,â1,â2kÄká1+â1+á2+â2?2
+ (1g1T,â1,â2 + kg(.,
a2)1[a1,b1],â11Älá2)] .
Proof. Assume first that f = 0 on ?1T and define
h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2)
-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2). (2.3)
Then
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2 = ?2(f * h)(b1, b2) . ?t1?t2 ?t1, ?t2
a1 a2
Choose åi > 0, 0 < á0i
< ái, 0 < â0 i < âi with
á0i + â0 i = 1 + åi. By proposition
the function f1 = Daá+' f, h1 =
Daâ+' h are in L8 and
satisfy
Iá0 = f , Iaâ+" h1
= h. (2.4)
Then by proposition, 2.3 and 2.4 we have
Z b1 Z b2 Z b1 Z b2 f(t1,
t2)?2g(t1, t2)
f(t1, t2)dg(t1, t2) = dt1dt2
?t1?t2
a1 a2 a1 a2
?2(f * h)(b1, b2)
=
?2
h i
Iá0
a+f1 * Iâ0
a+h1 (b1, b2)
?t1?t2
=
?t1?t2
?2 hi
Iá0+â0
= a+ (f1 * h1) (b1, b2)
?t1?t2
?2 ~I1
= a+Iåa+(f1 * h1)] (b1,
b2)
?t1?t2 ?2
= Iå a+(f1 * h1)(b1, b2),
?t1?t2
= Ia(+ 1,1), å=
such that Ia1+ Iå1,å2
a+
and then
~Z
kf1 * h1k8
(b1 - a1)1+å1(b2 -
a2)1+å2
= å1å2(å1)(å2) kf1k8kh1k8.
~Z b2 b1 ~~~~ = (b1 -
a1)å1(b2 - a2)å2 ~~ f(t1, t2)dg(t1, t2)
å1å2(å1)(å2) a1 a2
Next, the integration by parts for functions of two variables
(see[9]) yields
f1(x1, x2) = (1 - á'o(1 -
á'2) fa x
, " (1 - t1 )á 4 (x2 - t2)á4
1
r
2df ([t1,x1]× [t2,x2])
1 f ([t1,x1] × [t2, x2]) lim (1 ?
áo(1 ? t%?x% (x1 - t1)á4 (x2 -
t2)á4
lirn
x1 f ([t1, x1] [t2, x2]),
- dt1 t2?x2 fa1 (x1 t1)á1 (x2 -
t2)á2
x2 f ([t1, x1] × [t2, x2]) dt
lim
-
t1?x1 L2 (x1 t1)á4 (x2 - t2)á2 2
f2 f ([t1,x1] × [t2, x2])
a1 a2 (xi - t1)á4+1(x2 -
t2)á2+1
, dt1dt2}
+ác.á02
,0
á1u2 ix2 f ([t1,x1] × [t2,
x2])
t, d dt (1 - áo(1 -
ja2x1-t1)á4+1(x2 t2)á2+1
i 2,
so that
kf1k8 =
|
,0
á1u2
(1 ? ác)(1 ? T,á1,á2
|
(2.6)
x1 fx2
× (x1 - t1 -á4-1 (x2 -
t2)á2-á4-1dt1dt2
a2
= - a1)á1-á4(b2 -
a2)á2-á4.
Similary
- a1)â1-âc(b2 -
a2)â2-â. (2.7)
By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on
?1T. If f is not necessarily null on ?1T then we define
f(t1,t2) = f ([a1,× [a2, t2])
Then f = 0 on ?1T and f, f have the same increments. Then we
have
J b1 1b2
a2 f (t1,t2)?2 g(t1 t2)
?t1?t 2 dt1dt2
Z b1 Z b2 Z b1 Z b2
f(t1, t2)?2g(t1, t2) f(a1,
t2)?2g(t1, t2)
= dt1dt2 + dt1dt2
?t1?t2 ?t1?t2
a1 a2 a1 a2
+ fa1 a2
b1
f
b
2
f(t1, a2)?2g(t1,
?t1?t2
t2) dt1dt2 + f (a1, a2)g(([a1,b1]× [a2, b2]))
,,
= I2 b2 f (t1,t2)?2 g(t1, t2)
dt1dt2 + b2 f(a1, t2) r?g(b1 t2) ?g(a1 ?t2
?t2
t2) 1 dt2
a1 ?t1?t2
a2
a
?g(t1,b2) ? g(t1, a2)1 dt1 + f (a1,
a2)g(([a1,b1]×[a2, b2])
f21 b1 f(t1a2) [ ?t1
4
k=1
(2.8)
From the previous reasoning we have
ja1 b1 la:2 f (t1, t2)
?2g(t1 , t2)
dt1dt2
?t1?t2
=
C(ái,âi)kfkT,á1,á2kgkT,â1,â2(b1 -
a1)á1+â1(b2 - a2)á2+â2.
(2.9)
Next by using (1.3) we have
~~Z b2 ~?g(b1, t2) ~
|J2| =
- ?g(a1, t2) ~~~~
~~ [f(a1, t2) - f(a1, a2)] dt2
?t2 ?t2
a2
+ |f(a1, a2)g ([a1, b1] × [a2, b2])|
= C(ái, âi) kf(a1, .)1[a2,b2],á2kg(b1,.) -
g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2
+ |f(a1, a2)| 1g1T,â1,â2(b1 -
a1)â1(b2 - a2)â2,
so that
11 J2 11= C(ái, âi)11g1IT,â1,â2 {
If(a1, .)1[a2,b2],á2 (b1 - a1)â1(b2 -
a2)1+å2 + | f (a1, a2)| (b1 - a1)â1(b2 -
a2)â2 1.
(2.10)
Similarly
n11J311 = C(ái,
âi)1g1T,â1,â2 If(., a2)1[a1,b1],á1
(b1 - a1)1+å1(b2 - a2)â2 +|f(a1, a2)| (b1 -
a1)â1 (b2 - a2)â2}.
(2.11)
Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we
have
a1 (12
IÄ f (u1,u2)dg(u1, u2) - E f (si,tj)g ([sisi+1] ×
= Ib1 b2
f
=E
[f(u1, u2) - f(si,tj)] dg(u1, u2)
i,j
=E
i,j
isi+1 itj+1
+E
+E
jsi+1 itj+1
jsi+1 itj+1
[f(u1,u2) - f(u1, tj) - f(si,u2) + f(si,tj)] dg(u1, u2)
[f(u1, tj) - f(si,tj)] dg(u1, u2)
i,j t ·
isi+1 itj+1
8i 3 [f(si, u2) - f(si,tj)] dg(u1, u2)
= Ä + I,26,
(2.12)
From (2.1) it follows that
|I1Ä| =
C1f11T,á1,á2110T,â1,â2E
i,j
|
(si+1 - si)á1+â1(tj+1 -
tj)á2+â2
|
(2.13)
|
|
I2Ä =E
i
Z b1
,j Xtj)1 (u1, tj) [? g(u1,
tj+1) ?g(u1,du1
?u1 ?u1
a1 j
1si+1 ftj+1
Jsi[f (u1,tj) f (si, tj)]
3
?u1?u2
?2g(u1, u2) du1 du2
t ·
i,j [f(u1, tj) - f (si,tj)]
[?g(u?1u,t1 j+1)
?g(u1,tj)1 du1
?u1
1s i +1
C11fkT,á1,á2kgkT,â1,â2MÄ1á1+â1+á2+â2-2.
Next define
f1(u1, u2) = f(u1, u2) - f(si, u2) ifu1 ? [si, si+1).
Then (1.3),(1.4) imply
b1
I1 = C 11g(ui ) 11
fl (U1, -) 11 [a2,b2],á2 [a2 ,b2],â2 du1. (2.14)
a1
Since u1 ? [si, si+1) we have
If1(u1,.)1[a2,b2],á2 = 1f1T,á1,á2 (u1 -
si)á1 = 1f1T,á1,á2 IÄIá1
and
Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1
kg1T,â1,â2 + 1g(a1, .)1[a2,b2],â2 (2.15)
It follows by replacing in (2.14) that
11I2Ä11 =
C111f11T,á1,á211Ällá1
(11g11T,â1,â2 + 11g(a1,.)11[a2,b2],â2) . (2.16)
Similarly
11I3Ä11 (11g4,â1,â2 +
11g(.,a2)11[a1,b1],â1) . (2.17)
Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).
Next we define CT,á1,á2,8 the space
CT,á1,á2 endowed with the norm
1x1T,á1,á2,8 = 1x1T,á1,á2+ sup
a1=t1=b1
|
1x(t1, .)I[a2,b2],á2+ sup
a2=t2=b2
|
kx(.,t2) [a1,b1],á1+1x T,á1,á2.
|
|
f (u, v)dg(u, v) f - a1)â1(b2 -
a2)â2.
~
.fb1 b2
a
2
The space
(CT,á1,á2,8,1.1T,á1,á2,8) is a Banach
space.
The convergence of Riemann-Stieltjes sums to the integral for
Hölder functions of one variable in shown in [[8],[10],[11]]. The
corresponding result for functions of two variables is given in the next
theorem.
Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] ×
[a2 - å0, b2 + å0], å0 > 0, and let á1,
á2, â1, â2 ? (0, 1] be such that ái + âi >
1. If f ? CT0,á1,á2, g ? CT0,â1,â2, then there exists
a unique real number fb2
a
1
a
2
every sequence of partitions Än =
(sni ,tnj ), a1 = s0 < ... <
sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with
1Än1 ? 0, the Riemann-Stieltjes sums
f(u,v)dg(u,v) such that for
Sog= E
i
|
X(EsTi i,s7+1 ] × Etrj
i,t7+1])
j
|
|
b2
converge to f
f(u,v)dg(u,v). Moreover, the following estimate holds:
a
1
a
2
Proof. It is enough to prove that for every ä > 0
there exist ç > 0 such that for every two partitions (Äi)i=1,2,
ai = ui0 < ... < uim(i) = bi with kÄik <
ç we have
~~~Sf,g
Ä1- Sf,g ~~~ = ä. (2.19)
Ä-2
Let J ? C8(R2) be such that J = 0, J(x)
= 0 if 114 = 1 and Iand define
R2
Jå(x) = å-2J (x).
Consideer the regularizations of få, gå of
f,g. Recall that å
få(x) =R 2 Jå(x -
y)f (y)dy = f(x - åy)J(y)dy, and for gå
similarly (as usual f,g are extended as 0 on R2 \ T0). It is
well known that få ?f, gå ? g uniformly on
T . Also it is easily seen that
(2.20)
få ? CT,á1,á2, gå ?
CT,â1,â2.
Next we show that if 0 < á0i
< ái, 0 < â0 i < âi, then
få ? f in CT,á0
gå ? g in CT,â0
1,á0 2, 1,â0 2,
få(a1, .) ? f(a1, .) in
C[a2,b2],á02,
gå(a1, .) ? g(a1,.) in
C[a2,b2],â02, (2.21)
få(., a2) ? f(., a2) in
C[a1,b1],á'1,
gå(., a2) ? g(., a2) in
C[a1,b1],â01. (2.22)
We have
(få - f) ([s1, t1] × [s2,
t2])
Z
= J(u, v) {f ([s1 - åu, t1 - åu] × [s2 -
åv, t2 - åv])}
B(0,1)
-f ([s1, t1] × [s2, t2]) dudv,
and then for every å,ä > 0,
sup
si6=ti
|(få - f) ([s1,t1] × [s2, t2])|
2
|s1 - t1|á0 1|s2 - t2|á0
= sup
|
~
~|(få - f) ([s1, t1] ×
[s2, t2])|
2 , |si - ti| > ä, i = 1, 2
|s1 - t1|á0 1|s2 - t2|á0
|
|
~|(få - f) ([s1, t1] ×
[s2, t2])|
+ sup
2 , |s1 - t1| > ä or |s2 - t2| >
ä
|s1 - t1|á0 1|s2 - t2|á0
1
= sup {|f(u1, v1) - f(u2, v2)| , |ui - vi| < å, ui, vi
? T0, i = 1, 2}
äá0 1+á0 2
+CkfkT,á1,á2 max(äá1-á0 1,
äá2-á0 2) ? 0 as å ? 0, ä ? 0.
Similarly one prove(2.21),(2.22).
Next we choose 0 < á0i <
ái, 0 < â0 i < âi with
á'i + â0 i > 1. Then from (2.20),(2.22)
and (2.12) we obtain
~~~~~ + ~~~Sf,g
~Sf,g
Ä1 - Sf,g ~~~ = ~~~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä2 Ä1 Ä2
ib1 fa2 b2 b1 fb2
Qfål,gå
"Ä fådgå +Sk2 gå -
faa
1 1
a
2
+
~~
fådgå ~~
lim
å?
H
0
b1 fb2 b1 fb2
fådgå =
f dg,
1
1
12
2
1
1
I
~~~~~ + ~~~Sf,g = ~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä1 Ä2
~ n 1+á0
2+â0 2-2
+C ~kfåkT,á0 1,á0 2 +
kgåkT,â0 (kÄ1k + kÄ2k)á0 1+â0
1,â0 2
2o
+ (kÄ1k + kÄ2k)á0 1 + (kÄ1k +
kÄ2k)á0
~~~~~ + ~~~Sf,g = ~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä1 Ä2
n
1
+ C1 (kÄ1k + kÄ2k)á0
1+â0 1+á0
2+â0 2-2 + (kÄ1k +
kÄ2k)á0
+ (MÄ1M + 1Ä21)á02/ ? 0, as å
? 0 and then IÄiI ? 0. The previous computation also shows that
2.2 Some Additional Properties 23
|
|