WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Equations differentials stochastics involving fractional brownian motion two parameter

( Télécharger le fichier original )
par Iqbal HAMADA
Université de SaàŻda - Master 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.2 Two-parameter Fractional Brownian Motion

1.2.1 The Main Definition

For technical simplicity we consider two-parameter fbm (fbm field) {BHt , t ? R2+}, where t = (t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si = ti, i = 1, 2.

Definition 1.2.1. The two-parameter process {BHt ,t ? R2+} is called a (normalized) two-parameter fBm with Hurst index H = (H1, H2) ? (0, 1)2, if it satisfies the assumptions:

(a) BH is a Gaussian field, Bt = 0 for t ? ?R2+;

(b) EBti = 0, EBti BH = 1 11 s 4

i=1,2

(ti 2Hi + s2Hi i - |ti -si |2Hi)

Evidently, such a process has the modification with continuous trajectoires, and we will always consider such a modification. Moreover, consider "two-parameter" increments:ÄsBHt := BHt - BHs1t2 - BHt1s2 + BHs for s = t. Then they are stationary. Note, that for any fixed ti > 0 the process BH

(ti,.)

will be the fbm with Hurst index Hj, i = 1, 2, j = 3 - i, evidently, nonnormalized.

1.2.2 Fractional Integrals and Fractional Derivatives of 10 Two-parameter Functions

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions

For á = (á1, á2) denote (á) =

(á1)1(á2)

Definition 1.2.2. [2] Let f ? T := [a, b] := 11 [ai, bi], a = (a1, a2), b =

i=1,2

(b1, b2). Forward and backward Reimann-Liouville fractional integrals of orders 0 < ái < 1 are defined as

(I aá_r12 f)(x) := (á) 1,, f (u) ,x] ?(x, u, 1 - á) du,

and

Z (Ir2 f)(x) := (á)

f

u () ?(x, u du, 1 -- a) du,

+ E

i=1,2,j=3--i

ái

áj

xi f (x) - f (ui, x j)

% du

i i),

ai (xi -- Ui)l#177;a

xj - aj

correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11 [xi, bi], du = du1du2,

i=1,2 i=1,2

?(u,x, á) =| u1 - x1 |á1| u2 - x2 |á2 ,u, x ? [a, b].

Definition 1.2.3. Forward and backward fractional Liouville derivatives of orders 0 < ái < 1 are defined as

2

(Da

á1+ a
a2 f)(x) := 1-1(1 a) \
du 8x1?x2 I [a ,] ?(x f (u) u, á)

and

(Dbá1á2

l f

x

\

A )

:= (1 - á)

?x1?x2 f[x ,b] ? (x u, á) x ? [a, b]

f(u)

Definition 1.2.4. Forward fractional Marchaud derivatives of orders 0 < ái < 1 are defined as

15r

( 2 f)(x) :=(1 - á) f (x) +

á1á2 Äu f (x)du

?(x, u,á)i[a,x] 40(x, u, 1 + á)

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions 11

Let 1 = p = 8, the classes I+ á1á2(Lp(T)) := ~f|f = Iaá_ri2?, ? ? Lp(T)}, I- á1á2(Lp(T)) := {f|f = IbJá2?, ? ? Lp(T)}

Further we denote Dá1á2

a+ :=I-(á1á2)

a+ . Of course, we can introduce the notion

of fractional integrals and fractional derivatives on R2+. For exemple, the Riemann-Liouville fractional integrals and derivatives on R2+ are defined by the formulas

(Iá1á2 f)(x) := (á) L8,x] ?(xf(ut) á) dt,

Z

(I11á2 f)(x) := (á) f(ut) á) dt,
?(x [x,8) 2

(I_Vá1á2) f)(x) = (DTá2 f)(x) := (1 - á) O x1Oxe (t) dt,

x2 (-8,x] ?(x,t, á)

and

O2 f f(t)

(I-(á1á2)f)(x) (Dá1á2f)(x)

:= (1 - á) Ox1Ox2 i[x,8)?(x,t, á)dt,

0 < ái < 1. Evidently, all these operators can be expanded into the product of the form Iá1á2 += Iá1

+ ? Iá2

+ , and so on. In what follows we shall consider only the case Hi ? (1/2, 1). Define the operator

YM#177; 1 H2 f :=

i=1,2

4) Iá1á2 #177; f.

Definition 1.2.5. A random field {Xt,t ? R2+} is a field with independent
increments if its increments {ÄsiXti, i = 1, n} for any family of disjoint

rectangles {(si, ti], i = 1, n} are independent.

Definition 1.2.6. The random field {Wt,t ? R2+} is called the Wiener field if W = 0 on OR2+. W is the field with the independent increments and

E(ÄsWt)2 = area((s,t]) = II (ti - si).

i=1,2

Let we have a probability space (Ù,F, P) with two-parameter filtration {Ft, t ? R2+} on it. It means that Fs ? Ft ? F for s < t. Denote F* s:= ó{Fu, s = u}.

Definition 1.2.7. An adapted random field {Xt,Ft,t ? R2+} is a strong martingale if X vanishes on ?R2+, E|Xt| < 8 for all t ? R2+ and for any s < t E(ÄsXt|F* s) = 0.

Evidently, any random field with constant expectation and independent increments is a strong martingale, in particular, the Wiener field is a strong martingale.

Definition 1.2.8. Let

~ f ? L21H2 := f : R2 -->R : J ((M51H2f)(t))2dt < 8}

R

2

Then we denote I f (t)dBr1 H2 as .1 (M- H1H2 f)(t)dWt for the underlying R2 R2

Wiener process W.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard