WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Equations differentials stochastics involving fractional brownian motion two parameter

( Télécharger le fichier original )
par Iqbal HAMADA
Université de SaàŻda - Master 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.2 Two-parameter Fractional Brownian Motion

1.2.1 The Main Definition

For technical simplicity we consider two-parameter fbm (fbm field) {BHt , t ? R2+}, where t = (t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si = ti, i = 1, 2.

Definition 1.2.1. The two-parameter process {BHt ,t ? R2+} is called a (normalized) two-parameter fBm with Hurst index H = (H1, H2) ? (0, 1)2, if it satisfies the assumptions:

(a) BH is a Gaussian field, Bt = 0 for t ? ?R2+;

(b) EBti = 0, EBti BH = 1 11 s 4

i=1,2

(ti 2Hi + s2Hi i - |ti -si |2Hi)

Evidently, such a process has the modification with continuous trajectoires, and we will always consider such a modification. Moreover, consider "two-parameter" increments:ÄsBHt := BHt - BHs1t2 - BHt1s2 + BHs for s = t. Then they are stationary. Note, that for any fixed ti > 0 the process BH

(ti,.)

will be the fbm with Hurst index Hj, i = 1, 2, j = 3 - i, evidently, nonnormalized.

1.2.2 Fractional Integrals and Fractional Derivatives of 10 Two-parameter Functions

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions

For á = (á1, á2) denote (á) =

(á1)1(á2)

Definition 1.2.2. [2] Let f ? T := [a, b] := 11 [ai, bi], a = (a1, a2), b =

i=1,2

(b1, b2). Forward and backward Reimann-Liouville fractional integrals of orders 0 < ái < 1 are defined as

(I aá_r12 f)(x) := (á) 1,, f (u) ,x] ?(x, u, 1 - á) du,

and

Z (Ir2 f)(x) := (á)

f

u () ?(x, u du, 1 -- a) du,

+ E

i=1,2,j=3--i

ái

áj

xi f (x) - f (ui, x j)

% du

i i),

ai (xi -- Ui)l#177;a

xj - aj

correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11 [xi, bi], du = du1du2,

i=1,2 i=1,2

?(u,x, á) =| u1 - x1 |á1| u2 - x2 |á2 ,u, x ? [a, b].

Definition 1.2.3. Forward and backward fractional Liouville derivatives of orders 0 < ái < 1 are defined as

2

(Da

á1+ a
a2 f)(x) := 1-1(1 a) \
du 8x1?x2 I [a ,] ?(x f (u) u, á)

and

(Dbá1á2

l f

x

\

A )

:= (1 - á)

?x1?x2 f[x ,b] ? (x u, á) x ? [a, b]

f(u)

Definition 1.2.4. Forward fractional Marchaud derivatives of orders 0 < ái < 1 are defined as

15r

( 2 f)(x) :=(1 - á) f (x) +

á1á2 Äu f (x)du

?(x, u,á)i[a,x] 40(x, u, 1 + á)

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions 11

Let 1 = p = 8, the classes I+ á1á2(Lp(T)) := ~f|f = Iaá_ri2?, ? ? Lp(T)}, I- á1á2(Lp(T)) := {f|f = IbJá2?, ? ? Lp(T)}

Further we denote Dá1á2

a+ :=I-(á1á2)

a+ . Of course, we can introduce the notion

of fractional integrals and fractional derivatives on R2+. For exemple, the Riemann-Liouville fractional integrals and derivatives on R2+ are defined by the formulas

(Iá1á2 f)(x) := (á) L8,x] ?(xf(ut) á) dt,

Z

(I11á2 f)(x) := (á) f(ut) á) dt,
?(x [x,8) 2

(I_Vá1á2) f)(x) = (DTá2 f)(x) := (1 - á) O x1Oxe (t) dt,

x2 (-8,x] ?(x,t, á)

and

O2 f f(t)

(I-(á1á2)f)(x) (Dá1á2f)(x)

:= (1 - á) Ox1Ox2 i[x,8)?(x,t, á)dt,

0 < ái < 1. Evidently, all these operators can be expanded into the product of the form Iá1á2 += Iá1

+ ? Iá2

+ , and so on. In what follows we shall consider only the case Hi ? (1/2, 1). Define the operator

YM#177; 1 H2 f :=

i=1,2

4) Iá1á2 #177; f.

Definition 1.2.5. A random field {Xt,t ? R2+} is a field with independent
increments if its increments {ÄsiXti, i = 1, n} for any family of disjoint

rectangles {(si, ti], i = 1, n} are independent.

Definition 1.2.6. The random field {Wt,t ? R2+} is called the Wiener field if W = 0 on OR2+. W is the field with the independent increments and

E(ÄsWt)2 = area((s,t]) = II (ti - si).

i=1,2

Let we have a probability space (Ù,F, P) with two-parameter filtration {Ft, t ? R2+} on it. It means that Fs ? Ft ? F for s < t. Denote F* s:= ó{Fu, s = u}.

Definition 1.2.7. An adapted random field {Xt,Ft,t ? R2+} is a strong martingale if X vanishes on ?R2+, E|Xt| < 8 for all t ? R2+ and for any s < t E(ÄsXt|F* s) = 0.

Evidently, any random field with constant expectation and independent increments is a strong martingale, in particular, the Wiener field is a strong martingale.

Definition 1.2.8. Let

~ f ? L21H2 := f : R2 -->R : J ((M51H2f)(t))2dt < 8}

R

2

Then we denote I f (t)dBr1 H2 as .1 (M- H1H2 f)(t)dWt for the underlying R2 R2

Wiener process W.

précédent sommaire suivant






Extinction Rebellion







Changeons ce systeme injuste, Soyez votre propre syndic



"En amour, en art, en politique, il faut nous arranger pour que notre légèreté pèse lourd dans la balance."   Sacha Guitry