WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Application des générateurs de scénarios économiques en alm pour les compagnies d'assurance


par Mahdi Zribi
Tunis Dauphine - Master Actuariat 2022
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

3. Conclusion

Pour l'assurance non-vie nous choisissons d'investir selon l'allocation proposée dans le deuxième scénario, en effet un coefficient de variation de 14% contre celle des 30% pour le premier scénario.

15

TABLE DES FIGURES

FIGURE 3 - Distribution des NAV selon les deux scénarios

Pour l'assurance vie on choisi également le deuxième scénario, ce choix est motivé par la valeur du NAV de 93,01 contre -12,08, ce choix est renforcé également par une interprétation graphique en effet la première distribution est plus aplati par rapport à la deuxième ce qui implique que notre investissement est plus risqué et plus étalé ainsi on peut expliquer aussi ce choix par la volatilité élevée du marché donc les assureurs recourent vers les obligations pour se couvrir.

Les résultats réalisés n'impliquent pas de se limiter aux décisions fournies par le code, en effet :

· Un modèle est l'outil d'approximation et d'aide à la décision, certes son utile mais reste est limité : on peut renforcer le choix par d'autres outils

· Un assureur est exposé aux différents risques, il n'est pas évident de corréler entre eux : on peut modéliser des corrélations au sein d'un GSE par les méthodes des vraies semblances et les copules

· Mesurer les différents degrés d'aversion de risque : utiliser les fonctions d'utilité (Von Neuman Morgenstein)

16

Synthesis note

1. Introduction

Asset-liability management constitutes an organizational manual in insurance companies for measuring, analyzing and managing the risks inherent in the activity.

A forward-looking view of this fact becomes essential in order to ensure sufficient capital to meet future commitments. In life insurance, savings contracts provide for a certain number of financial guarantees such as the TMG, revaluation rate in return for a premium and risks such as mortality and redemption for to do so, the insurer must:

· Prevent an investment strategy.

· Set an optimal allocation of these interest generators.

· Treat his assumptions under different scenarios so that he is capable for any deviation from the market.

In non-life insurance, the premium paid must fully cover the risk taken out, in particular risks that last in the long term such as annuities following bodily injury in the automobile or annuities following a medical error in health insurance in this context. the insurer must study:

· The different financial scenarios, allowing to choose one of the different managed asset allocations according to the S / P ratio.

· The impact of changing the S / P ratio.

· The impact of excess claims.

Insurance companies are therefore highly dependent on the economic situation of the market, this factor is an inherent element of the activity since the insurer is committed to:

· Provide active-passive interaction.

· Choose an optimal asset allocation that meets the needs of policyholders and shareholders.

· Respect a regulatory and accounting framework.

Hence the need for an ALM (Asset Liability Management) model in order to project the flows of assets and liabilities and forecast the evolution of the activity of the company in the long term.

2. Une analyse des résultat obtenus

We are working on both sides of insurance: life and non-life insurance with the aim of providing decision support tools.

17

TABLE DES FIGURES

We begin to project our macroeconomic variables: the inflation index, the stock yield, the real estate yield, the real long rate, the real short rate and the nominal and real zero-coupon prices.

This projection constitutes the driving force of this thesis entitled "Application of the generators of economic scenarios in ALM for the insurance companies", it is ensured as indicated by its name by the GSE in particular the reference model AHLGRIM et al . : a model which requires data available at the level of the Tunisian market of which the latter responds to the constraint that it requests singled out compared to the other model (WILKIE, BRENNAN AND XIA in our study) by the real estate index which constitutes a pillar of investment in Tunisian insurers and simplicity of implementation. We obtain the following results:

These outputs are used in the following for :

· Project the balance sheet, the technical income statement and cash flow statement.

· Calculate the Best Estimate and the NAV.

· Analyze the different asset allocations.

18

TABLE DES FIGURES

For the projection (in non-life insurance), we rely on boostrapping techniques in order to resample a new scenario each time.

In non-life insurance, we have analyzed the evolution of own funds according to two economic scenarios, the distribution of the first of which is defined by: 15% in money market, 15% in equities, 10% in real estate and 50% in bond.

The allocation proposed for the second scenario is as follows: 20% in money market, 30% in equities, 20% in real estate and 20% in bonds.

For life insurance we find the following two histograms of the NAV distribution: The first scenario of which is defined by the following allocation:

· 80% in equity.

· 20% in bounds.

For the second scenario, we propose the opposite case (80 % in bonds and 20 % in shares (curve below)).

3. Conclusion

For the non-life insurance we choose to invest according to the allocation proposed in the second scenario, in fact a coefficient of variation of 14 % against that of the 30 % for the first scenario thus this choice is reinforced by a graphic interpretation: equity at the end of the period is higher than the first amount invested at the initial.

19

TABLE DES FIGURES

For the life insurance we also choose the second scenario, this choice is motivated by the value of the NAV of 93,01 against -12,08, this choice is also reinforced by a graphic interpretation in fact the first distribution is more flattened compared to the second which implies that our investment is more risky and more spread out so we can also explain this choice by the high volatility of the market therefore the insurers resorts green bonds to hedge.

The results achieved do not imply limiting oneself to the decisions provided by the code, in fact:

· A model is an approximation and decision-aid tool, certainly useful but these are limited: we can reinforce the choice by other tools.

· An insurer is exposed to different risks, it is not easy to correlate between them: we can model correlations within a GSE by the likelihood methods and them copulas.

· A person averse to risk and seek to hedge is not capable of generating more return: we resort to utility functions in microeconomics to reinforce the degree of risk aversion.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle