WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Modélisation et diagnostic des systèmes non linéaires par acp à  noyaux

( Télécharger le fichier original )
par Chemse-Eddine DJOUDI
Badji Mokhtar University - Master 2 - Robotique & informatique industrielle 2015
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

2.5.1 Génération de résidus par estimation d'état

La présence d'un défaut affectant l'une des variable provoque un changement dans les corrélations entre les variables indiquant une situation inhabituelle, les relations entre les variables ne seront plus vérifiées.

La projection du vecteur de mesures dans le sous-espace des résidus va croitre par rapport à sa valeur dans les conditions normales, et le défaut nous sera alors visible, pour détecter un tel changement dans les corrélation entre les différentes variables, l'ACP utilise plusieurs indices,notamment La statistique SPE, ou T2de Hotelling.

Détection de défauts Analyse en composantes principales

19

Une fois le nombre de composantes à retenir est déterminé, la matrice X peut être approximée à partir des l premières composantes principale qui correspondent au l plus

grandes valeurs propres de la matrice :

Xà =

Xl i=1

TipT i =

Xl i=1

XpipT i

La matrice des vecteurs propres et la matrice des composantes principales peuvent

être décomposées en deux sous-matrices : P = [ Pà P] et T = [

Tà T ]

Où:
P à et

T àreprésentent les matrices des l premiers vecteurs propres qui correspondent aux l premières composantes principale, et l'inverse pour P et T représentent les matrices des (m - l) vecteurs propres qui correspondent aux dernières composantes principales. Sachant que TN×m est donnée par:

T = X P = X [ Pà P]

On peut dire ainsi que:

Tà = X Pà

Et :

Xà = Tà Pà T

T àreprésente la projection de X sur l les premiers vecteurs propre de .

T = X P

Et :

X = T P T

Où:

T représente la projection de X sur les (m - l) derniers vecteurs propres. X représente la matrice des résidus qu'on notera E.

Détection de défauts Analyse en composantes principales

20

Figure 2.8 - Évolution de La projection de X sur les premiers (l) et dernièrs (m - l)
vecteurs propre de E

La décomposition de la matrice X donnera :

X = Xà + X = Xà + E

On note :

E = X C et Xà = X Cà

Oû:

Cà= PàPàT et C = (I - Cà)

Figure 2.9 - Comparaison entre X et son estimation Xà à partir des l premières
composantes principale

Détection de défauts Analyse en composantes principales

2.5.2 Statistique SPE

L'indicateur de détection SPE (Squared Prediction Error) réalise la détection de défauts dans l'espace résiduel. A l'instant k, il est donnépar :

SPE (k) = k1 (k)k 2 = xTx = Êm ~x2j(k)

j=1

Le processus est considéréen fonctionnement anormal (présence d'un défaut) à l'instant ksi:

SPE (k) > ä2á

Oùä2 est le seuil de détection du SPE(k) qui est approximépar : :

" 2

cá V2è2h6 è2h0(h0 - 1)

äá = è1 è1 + 1 + è2

1

1 h0

Soit :

èi =

m

Ê j=l+1

ëi j

Pour i=1,2,3 et ëi est la jemme valeur propre de la matrice E .

Où: h0 = 1 - 2è1è3

3è2 2 et Cá =

[(11e112)h0-1-è2h0(hè20-1

1

v2è2h2

0

 

Cá est la limite au seuil de confiance (1 - á).

21

Figure 2.10 - Indice SPE dans le cas sain et le cas défaillant avec un seuil de 95%

Détection de défauts Analyse en composantes principales

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Nous devons apprendre à vivre ensemble comme des frères sinon nous allons mourir tous ensemble comme des idiots"   Martin Luther King