2.2.2. Gestion et conservation d'un espace naturel
Approche économique de gestion des ressources naturelles
dans une perspective patrimoniale
L'une des difficultés de modélisation
économique du système de gestion des ressources naturelles des
espaces et site naturel est la prise en compte du long terme et de la
difficulté d'appréhension des incertitudes. Ainsi les
caractères complexes de l'évolution sont relatifs à la
nature même de certains biens et services des forêts et espaces
naturels qui sont non marchands comme la lutte contre l'érosion, la
régulation hydrique, la conservation de la flore, de la faune, de la
biodiversité, du paysage...
Cependant on peut tenter d'approcher économiquement
certaines réalités. Théoriquement la modélisation
économique répond sous réserve de certaines contraintes
à cette problématique du long terme (quel que soit le taux de
prélèvement, le taux de renouvellement des ressources naturelles
est assez souvent réalisable sur le long terme) par le processus du taux
d'actualisation.
En effet le taux d'actualisation est une valeur
quantifiée du temps par un système d'anticipation des cash-flows
futurs d'un investissement. Autrement dit le taux d'actualisation est le
procédé mathématique par lequel des flux financiers futurs
sont ramenés à une base temporelle pour être comparer ou
décider de l'opportunité d'un investissement (ou non). Dans le
cas d'espèce de gestion patrimoniale de la nature, il importe de
souligner l'importance du long terme. Ce qui se traduit par les calculs du taux
d'actualisation par le principe opposite : plus la durée,
séparant le futur du présent est longue, plus la valeur actuelle,
se réduit. Ce qui se traduit par la réduction de la valeur future
du patrimoine naturel avec l'accroissement du risque induit par le temps
surtout actuellement avec le changement climatique et le réchauffement
de la planète. Ainsi, tout projet inscrit dans un cadre de gestion
durable du patrimoine naturel (par essence dynamique) sous réserve de
certaines contraintes pourra s'intégrer dans un processus de taux
d'actualisation. A terme on pourra dire que tout projet de longue durée
de mise en valeur et de conservation de ressources naturelles doit tenir compte
du taux de rentabilité interne économique, qui s'il est trop
élevé, serait porteur des gênes de destruction du
patrimoine naturel. Le taux de rentabilité interne du projet
étant le taux d'actualisation pour lequel le bénéfice net
actualisé est nul.
Une simulation mathématique de ce principe réside
dans la formulation ci-après :
Supposons un patrimoine forestier à caractère
culturel en milieu urbain qui compte-tenu du vieillissement abondant de ses
arbres remarquables (qui sont des sources de menace pour les usagers) va
bénéficier d'un projet de renouvellement ou de
régénération (un tel projet étant toujours inscrit
sur le long terme).
On fait l'hypothèse, toutes choses étant
égales par ailleurs, de minimisation des aléas climatiques
avec les conditions d'une bonne capacité d'absorption du sol du site
du projet. Soit t le taux d'actualisation du projet de
renouvellement sur le site du patrimoine forestier urbain
précédemment considéré. Si ce projet
entraine respectivement pour les 0,1,2,3..., n années
(n ° N35) les coûts d'investissement et de fonctionnement C0,
C1, C2, C3, ..., Cn et rapporte dans le cadre des différentes
activités de médiation (visite de site, activités connexes
rendues possibles grâce au paysage naturel du site en question : bar et
restauration, ...) de ce même projet de patrimoine naturel sur les
mêmes années les bénéfices bruts B0, B1, B2 ,
B3,..., Bn . On déterminera le bénéfice net
actualisé (BNF) de ce projet avec le taux d'actualisation t par
la formule ci-après :
BNA = ( B0 - C0) +( B1 - C1) ( 1+ t)-1 +( B2
- C2) ( 1+ t)-2 +... +( Bn - Cn) ( 1+
t)-n Ce qui entraîne : BNA = ? (Bn - Cn) (1+
t)-n
Ainsi l'appréciation patrimoniale de ce projet pourra
être analysée à la lumière du taux de
rentabilité interne (TRI) de ce projet présupposé dans
notre hypothèse actuelle. Cette analyse en termes de rentabilité
étant, la situation d'équilibre se justifie par l'annulation du
bénéfice net actualisé (BNA). Mathématiquement
cette situation se présente comme suit :
BNA = 0 -> ? (Bn - Cn) (1+ t)-n = 0
Ainsi, si le résultat de ce projet est faible et
avoisine par exemple un taux de rentabilité interne (TRI) autour de 2%
ou 3%, ledit projet pourra être vu sous l'angle patrimonial de
manière différente, si on observe un TRI36
supérieur à 3% (ce qui est intéressant
économiquement pour un projet) alors, on pourra dire qu'un tel projet
comporte d'importants risques de disparition ou de mauvaise conservation des
ressources naturelles à cause de la pression relative à la
ponction humaine ou au taux de prélèvement.
|