| CONCLUSION GÉNÉRALEDans le cadre de notre travail, nous avons
étudié les interrupteurs à semi-conducteurs de puissance,
ensuite nous avons étudié quelques types des convertisseurs
DC-DC. Puis nous avons étudié la simulation du hacheur
dévolteur ainsi leurs résultats expérimentaux. Les composants de base de ces circuits sont les valves
à semi-conducteurs qui se comportent essentiellement comme des
interrupteurs ultra-rapides. La valve la plus simple est la diode. C'est un
interrupteur qui conduit le courant dans un seul sens. Le thyristor a des caractéristiques semblables à
la diode, mais sa conduction peut être retardée en envoyant une
impulsion appropriée sur la gâchette par un circuit de commande
qui on a étudie précédemment. Le thyristor GTO, le transistor BJT, le transistor IGBT et le
MOSFET procurent encore plus de flexibilité que le thyristor. Dans notre hacheur la valve MOSFET commandées par un
circuit de commande simple. Cette valve est branchée en parallèle
avec une diode pour réaliser un interrupteur bidirectionnel. Les hacheurs permettent de générer une tension
de forme quelconque en utilisant la technique de la modulation de largeur
d'impulsions (MLI ou PWM) cette technique consiste à découper la
tension continue à une certaine fréquence et à faire
varier le rapport cyclique. Comme perspectives, pour la continuité de ce travail nous
proposons : Ø Réalisation de la régulation du
système complet du hacheur. 
 
 LM2902,LM324/LM324A,LM224/ LM224A Quad Operational Amplifier Features 
·  Internally Frequency Compensated for Unity Gain ·  Large DC Voltage Gain: 100dB ·  Wide Power Supply Range:  LM224/LM224A, LM324/LM324A : 3V~32V (or #177;1.5 ~ 15V)  LM2902: 3V~26V (or #177;1.5V ~ 13V) ·  Input Common Mode Voltage Range Includes Ground ·  Large Output Voltage Swing: 0V to VCC -1.5V ·  Power Drain Suitable for Battery Operation  Description  The LM324/LM324A,LM2902,LM224/LM224A consist of four
independent, high gain, internally frequency compensated operational amplifiers
which were designed specifically to operate from a single power supply over a
wide voltage range. Operation from split power supplies is also possible so
long as the difference between the two supplies is 3 volts to 32 volts.
Application areas include transducer amplifier, DC gain blocks and all the
conventional OP-AMP circuits which now can be easily implemented in single
power supply systems.        14-SOP  14-DIP  1  1   OUT1  IN1 (-)  IN1 (+)  VCC  IN2 (+)  IN2 (-)  OUT2 Internal Block Diagram       1  14  2  3  4  5  6  2 3  _ + _  +  _  1  +  +  _  4  12  11  13  10  9  7 8  OUT4    IN4 (-)  IN4 (+)   GND  IN3 (+)  IN3 (-)    OUT3     Rev. 1.0.3   Schematic Diagram  (One Section Only)     VCC  GND        Q5 Q6  IN(-)  IN(+)  Q7  Q1  Q2  Q8  Q9  Q3  Q4  Q10  Q11  C1  Q13  Q12  Q14  Q17  Q15  Q18  Q16  Q19  R1  Q21  Q20  R2  OUTPUT Absolute Maximum Ratings 
 
| 
 Parameter | 
 Symbol | 
LM224/LM224A | 
LM324/LM324A | 
LM2902 | 
Unit | 
  Power Supply Voltage |  
| 
 VCC | 
#177;16 or 32 | 
#177;16 or 32 | 
#177;13 or 26 | 
V | 
  Differential Input Voltage |  
| 
 VI(DIFF) | 
32 | 
32 | 
26 | 
V | 
  Input Voltage |  
| 
 VI | 
-0.3 to +32 | 
-0.3 to +32 | 
-0.3 to +26 | 
V | 
  Output Short Circuit to GND Vcc=15V, TA=25°C(one Amp) |  
| 
 - | 
Continuous | 
Continuous | 
Continuous | 
- | 
  Power Dissipation, TA=25°C 14-DIP  14-SOP |  
| 
 PD | 
 1310640
 | 
1310640
 | 
1310640
 | 
 mW | 
  Operating Temperature Range |  
| 
 TOPR | 
-25 ~ +85 | 
0 ~ +70 | 
-40 ~ +85 | 
°C | 
  Storage Temperature Range |  
| 
 TSTG | 
-65 ~ +150 | 
-65 ~ +150 | 
-65 ~ +150 | 
°C |   | 
   Thermal Data 
 
| 
 Parameter | 
 Symbol | 
Value | 
Unit | 
  Thermal Resistance Junction-Ambient Max. |  
|   |   |   | 
  14-DIP |  
| 
 Rèja | 
95 | 
°C/W | 
  14-SOP |  
|   | 
 195 |   |   | 
  Electrical Characteristics  (VCC = 5.0V, VEE = GND, TA = 25 LC, unless otherwise
specified) 
 
| 
 Parameter | 
 Symbol | 
Conditions | 
LM224 | 
LM324 | 
LM2902 | 
Unit |   |  
| 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. |   |  
| 
 VIO | 
 VCM = 0V to VCC -1.5V  VO(P) = 1.4V, RS  = 0LI | 
 - | 
1.5 | 
5.0 | 
- | 
1.5 | 
7.0 | 
- | 
1.5 | 
7.0 | 
mV | 
  Input Offset Current |  
| 
 IIO | 
 - | 
 - | 
2.0 | 
30 | 
- | 
3.0 | 
50 | 
- | 
3.0 | 
50 | 
nA | 
  Input Bias Current |  
| 
 IBIAS | 
 - | 
 - | 
40 | 
150 | 
- | 
40 | 
250 | 
- | 
40 | 
250 | 
nA | 
  Common-Mode Input  Voltage Range |  
| 
 VI(R) | 
 Note1 | 
 0 | 
- | 
 VCC-1.5
 | 
 0 | 
VCC-1.5
 | 
- | 
0 | 
- | 
VCC-1.5
 | 
V | 
  Supply Current |  
| 
 ICC | 
 RL = L1,VCC = 30V (all Amps) | 
 - | 
1.0 | 
3 | 
- | 
1.0 | 
3 | 
- | 
1.0 | 
3 | 
mA |   |  
| 
 - | 
0.7 | 
1.2 | 
- | 
0.7 | 
1.2 | 
- | 
0.7 | 
1.2 | 
mA | 
   Large SignalVoltage Gain
 |  
| 
GV | 
 VCC = 15V,RLL2KLI VO(P) = 1V to 11V | 
 50 | 
100 | 
- | 
25 | 
100 | 
- | 
- | 
100 | 
- | 
V/mV
 | 
  Output Voltage Swing |  
| 
 VO(H) | 
 Note1 | 
 RL =  2KLI | 
 26 | 
- | 
- | 
26 | 
- | 
- | 
22 | 
- | 
- | 
V |   |  
| 
 27 | 
28 | 
- | 
27 | 
28 | 
- | 
23 | 
24 | 
- | 
V |   |  
| 
 VCC = 5V,RLL10KLI | 
 - | 
5 | 
20 | 
- | 
5 | 
20 | 
- | 
5 | 
100 | 
mV | 
   Common-ModeRejection Ratio
 |  
| 
CMRR | 
 - | 
 70 | 
85 | 
- | 
65 | 
75 | 
- | 
50 | 
75 | 
- | 
dB | 
  Power Supply Rejection Ratio |  
| 
 PSRR | 
 - | 
 65 | 
100 | 
- | 
65 | 
100 | 
- | 
50 | 
100 | 
- | 
dB | 
  Channel Separation |  
| 
 CS | 
 f = 1KHz to 20KHz | 
 - | 
120 | 
- | 
- | 
120 | 
- | 
- | 
120 | 
- | 
dB | 
  Short Circuit to GND |  
| 
 ISC | 
 - | 
 - | 
40 | 
60 | 
- | 
40 | 
60 | 
- | 
40 | 
60 | 
mA | 
  Output Current |  
| 
 ISOURCE | 
 VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P)  = 2V | 
 20 | 
40 | 
- | 
20 | 
40 | 
- | 
20 | 
40 | 
- | 
mA |   |  
| 
 VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P)  = 2V | 
 10 | 
13 | 
- | 
10 | 
13 | 
- | 
10 | 
13 | 
- | 
mA |   |  
| 
 12 | 
45 | 
- | 
12 | 
45 | 
- | 
- | 
- | 
- | 
LA | 
  Differential Input Voltage |  
| 
 VI(DIFF) | 
 - | 
 - | 
- | 
VCC | 
- | 
- | 
VCC | 
- | 
- | 
VCC | 
V |   | 
   Note :  1. VCC=30V for LM224 and LM324 , VCC = 26V for LM2902   Electrical Characteristics (Continued)  (VCC = 5.0V, VEE = GND, unless otherwise specified)  The following specification apply over the range of -25°C =
TA = + 85°C for the LM224; and the 0°C = TA = +70°C for the
LM324 ; and the - 40°C = TA = +85°C for the LM2902 
 
| 
 Parameter | 
 Symbol | 
Conditions | 
LM224 | 
LM324 | 
LM2902 | 
Unit |   |  
| 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. |   |  
| 
 VIO | 
 VICM = 0V to VCC -1.5V  VO(P) = 1.4V, RS  = 0? | 
 - | 
- | 
7.0 | 
- | 
- | 
9.0 | 
- | 
- | 
10.0 | 
mV | 
  Input Offset Voltage Drift |  
| 
 ?VIO/?T | 
 - | 
 - | 
7.0 | 
- | 
- | 
7.0 | 
- | 
- | 
7.0 | 
- | 
uV/°C | 
  Input Offset Current |  
| 
 IIO | 
 - | 
 - | 
- | 
100 | 
- | 
- | 
150 | 
- | 
- | 
200 | 
nA | 
  Input Offset Current Drift |  
| 
 ?IIO/?T | 
 - | 
 - | 
10 | 
- | 
- | 
10 | 
- | 
- | 
10 | 
- | 
pA/°C | 
  Input Bias Current |  
| 
 IBIAS | 
 - | 
 - | 
- | 
300 | 
- | 
- | 
500 | 
- | 
- | 
500 | 
nA | 
  Common-Mode Input Voltage Range |  
| 
 VI(R) | 
 Note1 | 
 0 | 
- | 
 VCC-2.0
 | 
 0 | 
- | 
 VCC-2.0
 | 
 0 | 
- | 
 VCC-2.0
 | 
 V | 
  Large Signal Voltage Gain |  
| 
 GV | 
 VCC = 15V, RL = 2.0K?  VO(P) = 1V to 11V | 
 25 | 
- | 
- | 
15 | 
- | 
- | 
15 | 
- | 
- | 
V/mV | 
  Output Voltage Swing |  
| 
 VO(H) | 
 Note1 | 
 RL =  2K? | 
 26 | 
- | 
- | 
26 | 
- | 
- | 
22 | 
- | 
- | 
V |   |  
| 
 27 | 
28 | 
- | 
27 | 
28 | 
- | 
23 | 
24 | 
- | 
V |   |  
| 
 VCC = 5V,  RL=10K? |   | 
 5 | 
20 | 
- | 
5 | 
20 | 
- | 
5 | 
100 | 
mV | 
  Output Current |  
| 
 ISOURCE | 
 VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V | 
 10 | 
20 | 
- | 
10 | 
20 | 
- | 
10 | 
20 | 
- | 
mA |   |  
| 
 VI(+) = 0V, VI(-) = 1V  VCC = 15V, VO(P) = 2V | 
 10 | 
13 | 
- | 
5 | 
8 | 
- | 
5 | 
8 | 
- | 
mA | 
  Differential Input Voltage |  
| 
 VI(DIFF) | 
 - | 
 - | 
- | 
VCC | 
- | 
- | 
VCC | 
- | 
- | 
VCC | 
V |   | 
   Note:  1. VCC=30V for LM224 and LM324 , VCC = 26V for LM2902   Electrical Characteristics (Continued)  (VCC = 5.0V, VEE = GND, TA = 25LC, unless otherwise
specified) 
 
| 
 Parameter | 
 Symbol | 
Conditions | 
LM224A | 
LM324A | 
Unit |   |  
| 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. |   |  
| 
 VIO | 
 VCM = 0V to VCC -1.5V  VO(P) = 1.4V, RS = 0 u | 
 - | 
1.0 | 
3.0 | 
- | 
1.5 | 
3.0 | 
mV | 
  Input Offset Current |  
| 
 IIO | 
 - | 
 - | 
2 | 
15 | 
- | 
3.0 | 
30 | 
nA | 
  Input Bias Current |  
| 
 IBIAS | 
 - | 
 - | 
40 | 
80 | 
- | 
40 | 
100 | 
nA | 
  Input Common-Mode Voltage Range |  
| 
 VI(R) | 
 VCC = 30V | 
 0 | 
- | 
 VCC-1.5
 | 
 0 | 
- | 
VCC-1.5
 | 
V | 
  Supply Current (All Amps) |  
| 
 ICC | 
 VCC = 30V | 
 - | 
1.5 | 
3 | 
- | 
1.5 | 
3 | 
mA |   |  
| 
 - | 
0.7 | 
1.2 | 
- | 
0.7 | 
1.2 | 
mA | 
  Large Signal Voltage Gain |  
| 
 GV | 
 VCC = 15V, RLL 2 Ku VO(P) = 1V to 11V | 
 50 | 
100 | 
- | 
25 | 
100 | 
- | 
V/mV | 
  Output Voltage Swing |  
| 
 VO(H) | 
 Note1 | 
 RL = 2 Ku | 
 26 | 
- | 
- | 
26 | 
- | 
- | 
V |   |  
| 
 RL = 10 Ku | 
 27 | 
28 | 
- | 
27 | 
28 | 
- | 
V |   |  
| 
 VCC = 5V, RLL 10 Ku | 
 - | 
5 | 
20 | 
- | 
5 | 
20 | 
mV | 
  Common-Mode Rejection Ratio |  
| 
 CMRR | 
 - | 
 70 | 
85 | 
- | 
65 | 
85 | 
- | 
dB | 
  Power Supply Rejection Ratio |  
| 
 PSRR | 
 - | 
 65 | 
100 | 
- | 
65 | 
100 | 
- | 
dB | 
  Channel Separation |  
| 
 CS | 
 f = 1KHz to 20KHz | 
 - | 
120 | 
- | 
- | 
120 | 
- | 
dB | 
  Short Circuit to GND |  
| 
 ISC | 
 - | 
 - | 
40 | 
60 | 
- | 
40 | 
60 | 
mA | 
  Output Current |  
| 
 ISOURCE | 
 VI(+) = 1V, VI(-) = 0V VCC = 15V | 
 20 | 
40 | 
- | 
20 | 
40 | 
- | 
mA |   |  
| 
 VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P) = 2V | 
 10 | 
20 | 
- | 
10 | 
20 | 
- | 
mA |   |  
| 
 12 | 
50 | 
- | 
12 | 
50 | 
- | 
LA | 
  Differential Input Voltage |  
| 
 VI(DIFF) | 
 - | 
 - | 
- | 
VCC | 
- | 
- | 
VCC | 
V |   | 
   Note:  1. VCC=30V for LM224A, LM324A   Electrical Characteristics (Continued)  (VCC = 5.0V, VEE = GND, unless otherwise specified)  The following specification apply over the range of -25°C =
TA = + 85°C for the LM224A; and the 0°C = TA = +70°C for the
LM324A 
 
| 
 Parameter | 
 Symbol | 
Conditions | 
LM224A | 
LM324A | 
Unit |   |  
| 
Typ. | 
Max. | 
Min. | 
Typ. | 
Max. |   |  
| 
 VIO | 
 VCM = 0V to VCC -1.5V VO(P) = 1.4V, RS = 0? | 
 - | 
- | 
4.0 | 
- | 
- | 
5.0 | 
mV | 
  Input Offset Voltage Drift |  
| 
 ?VIO/?T | 
 - | 
 - | 
7.0 | 
20 | 
- | 
7.0 | 
30 | 
uV/°C | 
  Input Offset Current |  
| 
 IIO | 
 - | 
 - | 
- | 
30 | 
- | 
- | 
75 | 
nA | 
  Input Offset Current Drift |  
| 
 ?IIO/?T | 
 - | 
 - | 
10 | 
200 | 
- | 
10 | 
300 | 
pA/°C | 
  Input Bias Current |  
| 
 IBIAS | 
 - | 
 - | 
40 | 
100 | 
- | 
40 | 
200 | 
nA | 
  Common-Mode Input Voltage Range |  
| 
 VI(R) | 
 VCC = 30V | 
 0 | 
- | 
 VCC-2.0
 | 
 0 | 
- | 
VCC-2.0
 | 
V | 
  Large Signal Voltage Gain |  
| 
 GV | 
 VCC = 15V, RL= 2.0K? | 
 25 | 
- | 
- | 
15 | 
- | 
- | 
V/mV | 
  Output Voltage Swing |  
| 
 VO(H) | 
 VCC = 30V | 
 RL = 2K? | 
 26 | 
- | 
- | 
26 | 
- | 
- | 
V |   |  
| 
 27 | 
28 | 
- | 
27 | 
28 | 
- |   |   |  
| 
 VCC = 5V, RL= 10K? | 
 - | 
5 | 
20 | 
- | 
5 | 
20 | 
mA | 
  Output Current |  
| 
 ISOURCE | 
 VI(+) = 1V, VI(-) = 0V VCC = 15V | 
 10 | 
20 | 
- | 
10 | 
20 | 
- | 
mA |   |  
| 
 VI(+) = 0V, VI(-) = 1V VCC = 15V | 
 5 | 
8 | 
- | 
5 | 
8 | 
- | 
mA | 
  Differential Input Voltage |  
| 
 VI(DIFF) | 
 - | 
 - | 
- | 
VCC | 
- | 
- | 
VCC | 
V |   | 
  Typical Performance Characteristics    Supply Voltage(v) Temperature Tj ( °C)  Figure 1. Input Voltage Range vs Supply Voltage Figure
2. Input Current vs Temperature    Supply Voltage (V)  Supply Voltage (V)  Figure 4. Voltage Gain vs Supply Voltage  Figure 3. Supply Current vs Supply Voltage    Frequency (Hz) Frequency (Hz)  Figure 5. Open Loop Frequency Response Figure 6. Common
mode Rejection Ratio   Typical Performance Characteristics
(Continued)         Figure 7. Slew Rate Figure 8. Voltage Follower Pulse
Response       Figure 9. Large Signal Frequency Response Figure 10.
Output Characteristics vs Current Sourcing  Figure 11. Output Characteristics vs Current Sinking
Figure 12. Current Limiting vs Temperature        #1  #7  0.252 E0.008  6.40 E0.20  7.62   0.300  #14  #8  19.80 MAX 0.780  0.200  5.08  0.128 E0.008  3.25 E0.20  19.40 D0.20  0.764 D0.008  MAX  2.08    0.082  0.130 E0.012  3.30 E0.30  0.008  0.20  0.46 1110  0.018 LO.004  MIN  1.50 D0.10  0.059 LO.004  2.54  0.100 Mechanical Dimensions  Package  Dimensions in millimeters  14-DIP   Mechanical Dimensions (Continued)  Package       1.27  0.050  14-SOP  0.05  0.002  1.55 #177;0.10  0.061 #177;0.004  1.80 MAX 0.071  8.70  0.343 MAX  8.56 00.20  0.337 D0.008  3.95 #177;0.20  0.156 #177;0.008  0.60 #177;0.20  5.72   0.225  0.024 #177;0.008  0.019  0.47  (,,-..,, )  #1  #7  6.00 #177;0.30  0.236 #177;0.012  #8  #14  +0.10  -0.05  0.406  +0.004  -0.002  0.016  MIN  MAX0.10  MAX0.004 Dimensions in millimeters        GlobalOptoisolatorn  4N25  4N26  4N27  4N28 
      The 4N25, 4N26, 4N27 and 4N28 devices consist of a gallium
arsenide infrared emitting diode optically coupled to a monolithic silicon
phototransistor detector. ·  Most Economical Optoisolator Choice for Medium Speed,
Switching Applications ·  Meets or Exceeds All JEDEC Registered Specifications ·       6 1  STANDARD THRU HOLE To order devices that are tested and marked per VDE
0884 requirements, thesuffix »V» must be included at end of part
number. VDE 0884 is a test option.
  Applications ·  General Purpose Switching Circuits ·  Interfacing and coupling systems of different potentials
and impedances ·  I/O Interfacing ·  Solid State Relays MAXIMUM RATINGS (TA = 25°C unless otherwise
noted) 
 INPUT LED 
 SCHEMATIC PIN 1. LED ANODE 
2.  LED CATHODE 3.  N.C. 4.  EMITTER 5.  COLLECTOR 6.  BASE 
 1 2 3 6 5 4 Reverse Voltage 
 
|   | VR | 3 | Volts |  
| Forward Current -- Continuous | IF | 60 | mA |  
| LED Power Dissipation @ TA = 25°C with Negligible Power in Output Detector Derate above
25°C | PD | 1201.41
 | mWmW/°C
 | 
OUTPUT TRANSISTOR 
 
| Collector-Emitter Voltage | VCEO | 30 | Volts |  
| Emitter-Collector Voltage | VECO | 7 | Volts |  
| Collector-Base Voltage | VCBO | 70 | Volts |  
| Collector Current -- Continuous | IC | 150 | mA |  
| Detector Power Dissipation @ TA = 25°C with Negligible Power
in Input LED Derate above 25°C | PD | 1501.76
 | mWmW/°C
 | 
TOTAL DEVICE 
| Isolation Surge Voltage(1) (Peak ac Voltage, 60 Hz, 1 sec Duration) | VISO | 7500 | Vac(pk) |  
| Total Device Power Dissipation @ TA = 25°C Derate above
25°C | PD | 2502.94
 | mWmW/°C
 |  
| Ambient Operating Temperature Range | TA | -55 to +100 | °C |  
| Storage Temperature Range | Tstg | -55 to +150 | °C |  
| Soldering Temperature (10 sec, 1/16? from case) | TL | 260 | °C | 
1. Isolation surge voltage is an internal device dielectric
breakdown rating. 1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and
6 are common. 
 ELECTRICAL CHARACTERISTICS (TA = 25°C
unless otherwise noted)(1) 
 
| Characteristic | Symbol | Min | Typ(1) | Max | Unit | 
INPUT LED 
 
| Forward Voltage (IF = 10 mA) TA = 25°C | VF | -- | 1.15 | 1.5 | Volts |  
| TA = -55°C |   | -- | 1.3 | -- |   |  
| TA = 100°C |   | -- | 1.05 | -- |   |  
| Reverse Leakage Current (VR = 3 V) | IR | -- | -- | 100 | uA |  
| Capacitance (V = 0 V, f = 1 MHz) | CJ | -- | 18 | -- | pF | 
OUTPUT TRANSISTOR 
 
| Collector-Emitter Dark Current 4N25,26,27 (VCE = 10 V, TA = 25°C 4N28 (VCE = 10 V, TA = 100°C) All Devices | ICEO | ----
 | 11
 | 50100
 | nA |  
| ICEO | -- | 1 | -- | uA |  
| Collector-Base Dark Current (VCB = 10 V) | ICBO | -- | 0.2 | -- | nA |  
| Collector-Emitter Breakdown Voltage (IC = 1 mA) | V(BR)CEO | 30 | 45 | -- | Volts |  
| Collector-Base Breakdown Voltage (IC = 100 uA) | V(BR)CBO | 70 | 100 | -- | Volts |  
| Emitter-Collector Breakdown Voltage (IE = 100 uA) | V(BR)ECO | 7 | 7.8 | -- | Volts |  
| DC Current Gain (IC = 2 mA, VCE = 5 V) | hFE | -- | 500 | -- | -- |  
| Collector-Emitter Capacitance (f = 1 MHz, VCE = 0) | CCE | -- | 7 | -- | pF |  
| Collector-Base Capacitance (f = 1 MHz, VCB = 0) | CCB | -- | 19 | -- | pF |  
| Emitter-Base Capacitance (f = 1 MHz, VEB = 0) | CEB | -- | 9 | -- | pF | 
COUPLED 
 
| Output Collector Current (IF = 10 mA, VCE = 10 V) 4N25,264N27,28
 | IC (CTR)(2) | 2 (20)1 (10)
 | 7 (70)5 (50)
 | ----
 | mA (%) |  
| Collector-Emitter Saturation Voltage (IC = 2 mA, IF = 50 mA) | VCE(sat) | -- | 0.15 | 0.5 | Volts |  
| Turn-On Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3) | ton | -- | 2.8 | -- | us |  
| Turn-Off Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3) | toff | -- | 4.5 | -- | us |  
| Rise Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3) | tr | -- | 1.2 | -- | us |  
| Fall Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3) | tf | -- | 1.3 | -- | us |  
| Isolation Voltage (f = 60 Hz, t = 1 sec)(4) | VISO | 7500 | -- | -- | Vac(pk) |  
| Isolation Resistance (V = 500 V)(4) | RISO | 1011 | -- | -- | ? |  
| Isolation Capacitance (V = 0 V, f = 1 MHz)(4) | CISO | -- | 0.2 | -- | pF | 
1.  Always design to the specified minimum/maximum electrical
limits (where applicable). 2.  Current Transfer Ratio (CTR) = IC/IF x 100%. 3.  For test circuit setup and waveforms, refer to Figure 11. 4.  For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6
are common. 
 IF, LED INPUT CURRENT (mA) IC, OUTPUT COLLECTOR CURRENT (NORMALIZED) TYPICAL CHARACTERISTICS 
 TA = -55°C 25°C 100°C PULSE ONLY PULSE OR DC 1 10 100 1000 2 VF, FORWARD VOLTAGE (VOLTS) 1.8 1.6 1.4 1.2 1 0.01 0.5 1 2 5 10 20 50 10 1 0.1 NORMALIZED TO:IF = 10 mA
 IF, LED FORWARD CURRENT (mA) Figure 1. LED Forward Voltage versus Forward
Current Figure 2. Output Current versus Input Current 
 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) -60 -40 -20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) IC, OUTPUT COLLECTOR CURRENT (NORMALIZED) IC, COLLECTOR CURRENT (mA) 28 24 20 16 12 4 8 0   2 mA   1 mA 0 1 2 3 4 5 6 7 8 9 10 IF = 10 mA 5 mA 1 0.7 0.5 0.2 0.1 10 2 75
 NORMALIZED TO TA = 25°C Figure 3. Collector Current versus Figure 4. Output
Current versus Ambient Temperature Collector-Emitter Voltage 
 1 lac, COLLECTOR-EMITTER DARK CURRENT(NORMALIZED)
 0.1 00 10 1 NORMALIZED TO:VCE = 10 V
 TA = 25°C
 VCE = 30 V 10 V 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) t, TIME (3) 100 50 20 10 5 2 1 0.1 0.2 0.5 1 2 5 10 20 50 100 IF, LED INPUT CURRENT (mA) RL = 1000 RL = 100{ { tf tr tr tf VCC = 10 V Figure 5. Dark Current versus Ambient Temperature Figure
6. Rise and Fall Times (Typical Values) ton TURN--ON TIME (C) 100 70 50 20 10 7 5 2 1 
 RL = 1000 100 10 VCC = 10 V 0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70100 IF, LED INPUT CURRENT (mA) Figure 7. Turn-On Switching Times(Typical
Values)
 IC ' TYPICAL COLLECTOR CURRENT (mA) 4 3 2 1 
 IF = 0 IB = 7 uA 4 uA 5 uA 3 uA 2 uA 1 uA 6 uA 0 2 4 6 8 10 12 14 16 18 20 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) toil TURN --OFF TIME (3) 100 70 50 20 10 7 5 2 1 
 RL = 1000 100 10 VCC = 10 V 0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70100 IF, LED INPUT CURRENT (mA) Figure 8. Turn-Off Switching Times(Typical
Values)
 C, CAPACITANCE (pF) 2018
 1614
 12
 10 8 6 4 20
 
 CLEDCCB
 CCE CEB f = 1 MHz 0.05 0.1 0.2 0.5 1 2 5 10 20 50 V, VOLTAGE (VOLTS) 
 TEST CIRCUIT VCC = 10 V WAVEFORMS IF = 10 mA RL = 100 ? INPUT OUTPUT 90% tr ton tf toff INPUT PULSE 10% OUTPUT PULSE Figure 9. DC Current Gain (Detector Only) Figure 10.
Capacitances versus Voltage 
 PACKAGE DIMENSIONS 
 0.13 (0.005) M NOTES: 
1.  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2.  CONTROLLING DIMENSION: INCH. 3.  DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 
| DIM | INCHES | MILLIMETERS |  
| MIN | MAX | MIN | MAX |  
| A | 0.320 | 0.350 | 8.13 | 8.89 |  
| B | 0.240 | 0.260 | 6.10 | 6.60 |  
| C | 0.115 | 0.200 | 2.93 | 5.08 |  
| D | 0.016 | 0.020 | 0.41 | 0.50 |  
| E | 0.040 | 0.070 | 1.02 | 1.77 |  
| F | 0.010 | 0.014 | 0.25 | 0.36 |  
| G | 0.100 BSC | 2.54 BSC |  
| J | 0.008 | 0.012 | 0.21 | 0.30 |  
| K | 0.100 | 0.150 | 2.54 | 3.81 |  
| L | 0.300 BSC 7.62 BSC |  
| M | 0 | 15 | 0 | 15 |  
| N | 0.015 | 0.100 | 0.38 | 2.54 | 
STYLE 1: PIN 1. ANODE 
2.  CATHODE 3.  NC 4.  EMITTER 5.  COLLECTOR 6.  BASE THRU HOLE 6 4 1 3 -A- -B- C K L J 6 PL M 0.13 (0.005) M T G D 6 PL -T- SEATING PLANE E 6 PL F 4 PL N B M A M T A M B M NOTES: 
1.  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2.  CONTROLLING DIMENSION: INCH. 
 
|   | INCHES | MILLIMETERS |  
| DIM | MIN | MAX | MIN | MAX |  
| A | 0.320 | 0.350 | 8.13 | 8.89 |  
| B | 0.240 | 0.260 | 6.10 | 6.60 |  
| C | 0.115 | 0.200 | 2.93 | 5.08 |  
| D | 0.016 | 0.020 | 0.41 | 0.50 |  
| E | 0.040 | 0.070 | 1.02 | 1.77 |  
| F | 0.010 | 0.014 | 0.25 | 0.36 |  
| G | 0.100 BSC | 2.54 BSC |  
| H | 0.020 | 0.025 | 0.51 | 0.63 |  
| J | 0.008 | 0.012 | 0.20 | 0.30 |  
| K | 0.006 | 0.035 | 0.16 | 0.88 |  
| L | 0.320 BSC | 8.13 BSC |  
| S | 0.332 0.390 | 8.43 9.90 | 
SURFACE MOUNT 6 4 1 -A- 3 -B- B M E 6 PL F 4 PL G D 6 PL 0.13 (0.005) H C M T A M B M L K 6 PL 0.13 (0.005) J M -T- SEATING PLANE T A M 
 4N25 4N26 4N27 4N28 NOTES: 
1.  DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2.  CONTROLLING DIMENSION: INCH. 3.  DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 
 
|   | INCHES | MILLIMETERS |  
| DIM | MIN | MAX | MIN | MAX |  
| A | 0.320 | 0.350 | 8.13 | 8.89 |  
| B | 0.240 | 0.260 | 6.10 | 6.60 |  
| C | 0.115 | 0.200 | 2.93 | 5.08 |  
| D | 0.016 | 0.020 | 0.41 | 0.50 |  
| E | 0.040 | 0.070 | 1.02 | 1.77 |  
| F | 0.010 | 0.014 | 0.25 | 0.36 |  
| G | 0.100 BSC | 2.54 BSC |  
| J | 0.008 | 0.012 | 0.21 | 0.30 |  
| K | 0.100 | 0.150 | 2.54 | 3.81 |  
| L | 0.400 | 0.425 | 10.16 | 10.80 |  
| N | 0.015 | 0.040 | 0.38 | 1.02 | 
0.4" LEAD SPACING D 6 PL 6 4 1 3 -A- G N -B- K C L J F 4 PL -T- SEATING PLANE E 6 PL T A B M M M 0.13 (0.005) PowerMOS transistor IRF840 Avalanche energy rated FEATURES SYMBOL QUICK REFERENCE DATA 
·   d s VDSS = 500 VID = 8.5 A
 RDS(ON) = 0.85 Ù 
Repetitive Avalanche Rated ·  Fast switching ·  High thermal cycling performance ·  Low thermal resistance GENERAL DESCRIPTION PINNING SOT78 (TO220AB) N-channel, enhancement mode field-effect power transistor,
intended for use in off-line switched mode power supplies, T.V. and computer
monitor power supplies, d.c. to d.c. converters, motor control circuits and
general purpose switching applications. The IRF840 is supplied in the SOT78 (TO220AB) conventional
leaded package. 
| PIN | DESCRIPTION |  
| 1 2 3tab
 | gate drain source drain |  
| tab |   | 
1 2 3 LIMITING VALUES Limiting values in accordance with the Absolute Maximum System
(IEC 134) 
 
| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |  
| VDSS | Drain-source voltage | Tj = 25 °C to 150°C | - | 500 | V |  
| VDGR | Drain-gate voltage | Tj = 25 °C to 150°C; RGS = 20 kÙ | - | 500 | V |  
| VGS | Gate-source voltage |   | - | #177; 30 | V |  
| ID | Continuous drain current | Tmb = 25 °C; VGS = 10 V | - | 8.5 | A |  
|   |   | Tmb = 100 °C; VGS = 10 V | - | 5.4 | A |  
| IDM | Pulsed drain current | Tmb = 25 °C | - | 34 | A |  
| PD | Total dissipation | Tmb = 25 °C | - | 147 | W |  
| Tj, Tstg | Operating junction and storage temperature range |   | - 55 | 150 | °C | 
AVALANCHE ENERGY LIMITING VALUES Limiting values in accordance with the Absolute Maximum System
(IEC 134) 
 
| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |  
| EAS | Non-repetitive avalanche energy | Unclamped inductive load, IAS = 7.4 A; tp = 0.22 ms; Tj prior to avalanche = 25°C; | - | 531 | mJ |  
|   |   | VDD = 50 V; RGS = 50 Ù; VGS = 10 V; refer to fig:17 |   |   |   |  
| EAR | Repetitive avalanche energy1 | IAR = 8.5 A; tp = 2.5 ìs; Tj prior to avalanche = 25°C; RGS = 50 Ù; VGS = 10 V; refer to
fig:18 | - | 13 | mJ |  
| IAS, IAR | Repetitive and non-repetitive avalanche current |   | - | 8.5 | A | 
1 pulse width and repetition rate limited by Tj
max. PowerMOS transistor IRF840 Avalanche energy rated THERMAL RESISTANCES 
 
| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |  
| Rth j-mb Rth j-a | Thermal resistance junction to mounting base Thermal resistance junction to ambient | in free air | --
 | -60
 | 0.85-
 | K/WK/W
 | 
ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified 
 
| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |  
| V(BR)DSS | Drain-source breakdown voltage | VGS = 0 V; ID = 0.25 mA | 500 | - | - | V |  
| ÄV(BR)DSS / ÄTj | Drain-source breakdown voltage temperature coefficient | VDS = VGS; ID = 0.25 mA | - | 0.1 | - | %/K |  
| RDS(ON) | Drain-source on resistance | VGS = 10 V; ID = 4.8 A | - | 0.6 | 0.85 | Ù |  
| VGS(TO) | Gate threshold voltage | VDS = VGS; ID = 0.25 mA | 2.0 | 3.0 | 4.0 | V |  
| gfs | Forward transconductance | VDS = 30 V; ID = 4.8 A | 3.5 | 6 | - | S |  
| IDSS | Drain-source leakage current | VDS = 500 V; VGS = 0 V | - | 1 | 25 | ìA |  
|   |   | VDS = 400 V; VGS = 0 V; Tj = 125 °C | - | 40 | 250 | ìA |  
| IGSS | Gate-source leakage current | VGS = #177;30 V; VDS = 0 V | - | 10 | 200 | nA |  
| Qg(tot) | Total gate charge | ID = 8.5 A; VDD = 400 V; VGS = 10 V | - | 55 | 80 | nC |  
| Qgs | Gate-source charge |   | - | 5.5 | 7 | nC |  
| Qgd | Gate-drain (Miller) charge |   | - | 30 | 45 | nC |  
| td(on) | Turn-on delay time | VDD = 250 V; RD = 30 Ù; | - | 18 | - | ns |  
| tr | Turn-on rise time | RG = 9.1 Ù | - | 37 | - | ns |  
| td(off) | Turn-off delay time |   | - | 80 | - | ns |  
| tf | Turn-off fall time |   | - | 36 | - | ns |  
| Ld | Internal drain inductance | Measured from tab to centre of die | - | 3.5 | - | nH |  
| Ld | Internal drain inductance | Measured from drain lead to centre of die | - | 4.5 | - | nH |  
| Ls | Internal source inductance | Measured from source lead to source bond pad | - | 7.5 | - | nH |  
| Ciss | Input capacitance | VGS = 0 V; VDS = 25 V; f = 1 MHz | - | 960 | - | pF |  
| Coss | Output capacitance |   | - | 140 | - | pF |  
| Crss | Feedback capacitance |   | - | 80 | - | pF | 
SOURCE-DRAIN DIODE RATINGS AND
CHARACTERISTICS Tj = 25 °C unless otherwise specified 
| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |  
| IS | Continuous source current | Tmb = 25°C | - | - | 8.5 | A |  
|   | (body diode) |   |   |   |   |   |  
| ISM | Pulsed source current (body diode) | Tmb = 25°C | - | - | 34 | A |  
| VSD | Diode forward voltage | IS = 8.5 A; VGS = 0 V | - | - | 1.2 | V |  
| trr | Reverse recovery time | IS = 8.5 A; VGS = 0 V; dI/dt = 100 A/ìs | - | 440 | - | ns |  
| Qrr | Reverse recovery charge |   | - | 6.4 | - | ìC | 

 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig.1. Normalised power dissipation. PD% = 100·PD/PD 25 °C = f(Tmb) 0 20 40 60 80 100 120 140 Tmb / C PD% Normalised Power Derating 120 110 100 90 80 70 60 50 40 30 20 10 0 Fig.2. Normalised continuous drain current.ID% =
100·ID/ID 25 °C = f(Tmb); conditions: VGS
= 10 V
 0 20 40 60 80 100 120 140 Tmb / C ID% Normalised Current Derating ID / A 100 10 DC 1 100 ms 0.1 Fig.3. Safe operating area. Tmb = 25
°CID & IDM = f(VDS); IDM single pulse; parameter
tp
 1 10 100 1000 VDS / V tp = 10 us 100 us 1 ms 10 ms 
 ID, Drain current (Amps 
| Tj = 25 C |   |   |   |   | 10 V |  
|   |   |   |   | 7 V | 6.5 V |  
|   |   | 6 V |  
|   |   |   |   |   | 5.5 V |  
|   |   |   |   |   | 5 V |  
|   |   |   |   | = 4.5 V |  
|   |   |   |   | VGS |  
|   |   |   |   |   |   | 
0 5 10 15 20 25 30 VDS, Drain-Source voltage (Volts) Fig.5. Typical output characteristics.ID =
f(VDS); parameter VGS
 30 25 20 15 10 5 0 RDS(on), Drain-Source on resistance (Ohms 
| 4.5 V |   |   | 5 V | 5.5 V | VGS = 6 V | Tj = 25 C |  
|   |   |   |   |   |   | 6.5 V 7 V 10 V |  
|   |   |   |   |   | 
0 5 10 15 20 25 ID, Drain current (Amps) Fig.6. Typical on-state resistance.RDS(ON) =
f(ID); parameter VGS
 2 1.5 1 0.5 0 D = 0.5 0.2 0.1 0.1 0.05 0.02 0.01 tp D = tp T PD single pulse t T 1ms 10ms 100ms 1s tp, pulse width (s) 0.0011us 10us 100us 1 Zth j-mb, Transient thermal impedance (K/W) Fig.4. Transient thermal impedance.Zth j-mb = f(t);
parameter D = tiT
 PowerMOS transistor IRF840 Avalanche energy rated 
 ID, Drain current (Amps) 25 VDS > ID x RDS(on)max 20 15 10 5 Tj = 150 C Tj = 25 C 0 0 2 4 6 8 10 Fig.7. Typical transfer characteristics.ID = f(VGS);
parameter Tj
 VGS, Gate-Source voltage (Volts) gfs, Transconductance (S) 10 VDS > ID x RDS(on)max Tj = 25 C 8 150 C 6 4 2 0 ID, Drain current (A) 0 5 10 15 20 25 Fig.8. Typical transconductance.gfs = f(ID);
parameter Tj
 Normalised RDS(ON) = f(Tj) a 2 1 0 Fig.9. Normalised drain-source on-state resistance. a = RDS(ON)/RDS(ON)25 °C = f(Tj); ID = 4.25 A; VGS =
10 V -60 -40 -20 0 20 40 60 80 100 120 140 Tj / C 
 VGS(TO) / V max. typ. 4 3 min. 2 1 Fig.10. Gate threshold voltage.VGS(TO) =
f(Tj); conditions: ID = 0.25 mA; VDS = VGS
 0 -60 -40 -20 0 20 40 60 80 100 120 140 Tj / C SUB-THRESHOLD CONDUCTION ID / A 1E-01 1E-02 2 % typ 98 % 1E-03 1E-04 1E-05 1E-06 Fig.11. Sub-threshold drain current.ID = f(VGS);
conditions: Tj = 25 °C; VDS = VGS
 0 1 2 3 4 VGS / V Junction capacitances (pF) 10000 Ciss 1000 Coss 100 Crss 10 Fig.12. Typical capacitances, Ciss, Coss, Crss. C =
f(VDS); conditions: VGS = 0 V; f = 1 MHz 1 10 100 1000 VDS, Drain-Source voltage (Volts) PowerMOS transistor IRF840 Avalanche energy rated PowerMOS transistor IRF840 Avalanche energy rated PHP8N50E 15 ID = 8.5A Tj = 25 C 14 13 200V 12 11 10 100V 9 8 VDD = 400 V 7 6 5 4 3 2 1 0 Gate-source voltage, VGS (V) IF, Source-Drain diode current (Amps) VGS = 0 V Tj = 25 C 5 0 20 10 
 150 C 
 Fig.13. Typical turn-on gate-charge characteristics.VGS
= f(QG); parameter VDS
 0 20 40 60 80 Gate charge, QG (nC) Switching times (ns) 1000 VDD = 250 V VGS = 10 V RD = 30 Ohms Tj = 25 C td(off) 100 tf tr td(on) 10 RG, Gate resistance (Ohms) Fig.14. Typical switching times;
td(on), tr,
td(off), tf = f(RG) 0 10 20 30 40 50 60 1.15 V(BR)DSS @ Tj V(BR)DSS @ 25 C 1.1 1.05 1 0.95 0.9 0.85 Tj, Junction temperature (C) Fig.15. Normalised drain-source breakdown voltage; V(BR)DSS/V(BR)DSS 25 °C = f(Tj) 100 50 0 50 100 150 Normalised Drain-source breakdown voltage 0 0.2 0.4 0.6 0.8 1 1.2 1.4 VSDS, Source-Drain voltage (Volts) 
 10 25 C Tj prior to avalanche = 125 C 1 0.1 Fig.17. Maximum permissible non-repetitiveavalanche
current (IAS) versus avalanche time (tp);
 unclamped
inductive load
 1E-06 1E-05 1E-04 1E-03 1E-02 Avalanche time, tp (s) Non-repetitive Avalanche current, IAS (A) 
 10 Tj prior to avalanche = 25 C 125 C 1 0.1 PHP8N50E 0.01 Fig.18. Maximum permissible repetitive avalanchecurrent
(IAR) versus avalanche time (tp)
 1E-06 1E-05 1E-04 1E-03 1E-02 Avalanche time, tp (s) Maximum Repetitive Avalanche Current, IAR (A) Fig.16. Source-Drain diode characteristic. IF =
f(VSDS); parameter Tj  PowerMOS transistor IRF840 Avalanche energy rated MECHANICAL DATA Plastic single-ended package; heatsink mounted; 1
mounting hole; 3-lead TO-220 SOT78 
 
 
 L2(1) b1 D1 e e 1 2 3 b L1 q 0 5 10 mm 
 scale DIMENSIONS (mm are the original dimensions) 
 
| UNIT | A | A1 | b | b1 | c | D | D1 | E | e | L | L1 | (1) L2 max. | P | q | Q |  
| mm | 4.54.1
 | 1.391.27
 | 0.90.7
 | 1.31.0
 | 0.70.4
 | 15.815.2
 | 6.45.9
 | 10.39.7
 | 2.54 | 15.013.5
 | 3.302.79
 | 3.0 | 3.83.6
 | 3.02.7
 | 2.62.2
 | 
Note 1. Terminals in this zone are not tinned. 
| OUTLINEVERSION
 | REFERENCES | EUROPEANPROJECTION
 | ISSUE DATE |  
| IEC | JEDEC | EIAJ |   |  
| SOT78 |   | TO-220 |   |   |   | 97-06-11 |  
|   | 
c 
 A A1 Q Fig.19. SOT78 (TO220AB); pin 2 connected to mounting base
(Net mass:2g) Notes 
1.  This product is supplied in anti-static packaging. The
gate-source input must be protected against static discharge during transport
or handling. 2.  Refer to mounting instructions for SOT78 (TO220AB)
package. 3.  Epoxy meets UL94 V0 at 1/8". 
 

 
[1]  GLAISE Christian. "Introduction à
l'Électrotechnique et à l'Électronique de puissance".
Collection médiathèque e-EEA du club EEA. Version du 9 septembre
2002. Disponible sur le site 
http://www.geii.iut-nimes.fr/cg/
de l'IUT de Nîmes. [3]  GASTON Bachelard in "la Formation de
l'esprit scientifique" , les composants d'électronique de puissance.
Version du septembre 2004. [3]. MOUSTAFAOUI Dris, OUAGUENI
Abdelmadjid, "Étude comparative de différentes
stratégies de commande des variateurs de vitesse", Mémoire de fin
d'étude cycle licence département d'électrotechnique,
université de M'sila 2009, dirigé par: Mr : KHODJA Djalal
Eddine. 
[4]  MAARAD Samir, BELKHIRI Walid,
"Maintenance des maquettes didactiques de l'électronique de puissance".
Mémoire de fin d'étude cycle ingénieur département
d'électrotechnique, université de Batna 2010, dirigé par
Ms : KERCHA Mbarka. [6]  
www.google.com,
ChapitreII_Les_interrupteurs_semi_conducteurs.pdf. [8]  Cours Énergie et convertisseurs d'énergie,
"Chapitre 2 interrupteurs semi-conducteurs de puissance", Université de
Savoie Licence EEA. [10]  ACHORA Atef, HAMDI Farid, "Étude et
réalisation d'une maquette d'un hacheur série à base d'une
MOSFET", Mémoire de fin d'étude cycle DUEA département
d'électrotechnique, université de Batna, dirigé parMr:
Bendaas Med Lokman.
 [8] Cours d'électronique de puissance de
4éme année machine de Mr : Bendaas Med Lokman. 
[9]   
 
[11]  http : // 
ww.pwrx.com. [12]  
www.google.com,
cours_hacheurs.pdf. [13]  http : // 
validator.w3.org. [14]  
www.google.com,
cours_hacheur4-quadrants. [16]  RAHMOUNI Abderrezak , "Commande d'un
moteur à courant continu (assistée par le PIC16F84)".
Mémoire de fin d'étude cycle ingénieur département
d'électrotechnique, université de Batna 2004, dirigé par
Mr : A.H-Haddoun et Mr : S.Drid. [18]  DRAIFA Samir, MEBARKIA Abderaouf,
"Étude et réalisation d'une maquette didactique pour
l'électronique de puissance (Redresseur - Gradateur - Hacheur)",
Mémoire de fin d'étude cycle ingénieur département
d'électrotechnique, université de Batna 2008, dirigé par
Mr : Bendaas Med Lokman. [20]  LAIB Hichem, BAIDI Badiss,
"Étude et réalisation d'une carde de commande d'un thyristor et
d'un hacheur". Mémoire de fin d'étude cycle ingénieur
département d'électrotechnique, université de Batna 2005,
dirigé par Mr : Bendaas Med Lokman. http : // 
www.eupec.com. [10]  BOUKRANA Lilia, "Étude et
réalisation d'un hacheur réversible en tension", Mémoire
de fin d'étude cycle DUEA département d'électrotechnique,
université de Batna 2008, dirigé par Mr. Bendaas Med
Lokman. |