WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Simulation et étude expérimentale d'un hacheur dévolteur à  base d'un MOSFET (Metal Oxyde Semiconductor Field Effect Transistor)

( Télécharger le fichier original )
par Oussama Demane
Université de Batna - Master en génie électrique 2011
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

CONCLUSION GÉNÉRALE

Dans le cadre de notre travail, nous avons étudié les interrupteurs à semi-conducteurs de puissance, ensuite nous avons étudié quelques types des convertisseurs DC-DC. Puis nous avons étudié la simulation du hacheur dévolteur ainsi leurs résultats expérimentaux.

Les composants de base de ces circuits sont les valves à semi-conducteurs qui se comportent essentiellement comme des interrupteurs ultra-rapides. La valve la plus simple est la diode. C'est un interrupteur qui conduit le courant dans un seul sens.

Le thyristor a des caractéristiques semblables à la diode, mais sa conduction peut être retardée en envoyant une impulsion appropriée sur la gâchette par un circuit de commande qui on a étudie précédemment.

Le thyristor GTO, le transistor BJT, le transistor IGBT et le MOSFET procurent encore plus de flexibilité que le thyristor.

Dans notre hacheur la valve MOSFET commandées par un circuit de commande simple. Cette valve est branchée en parallèle avec une diode pour réaliser un interrupteur bidirectionnel.

Les hacheurs permettent de générer une tension de forme quelconque en utilisant la technique de la modulation de largeur d'impulsions (MLI ou PWM) cette technique consiste à découper la tension continue à une certaine fréquence et à faire varier le rapport cyclique.

Comme perspectives, pour la continuité de ce travail nous proposons : Ø Réalisation de la régulation du système complet du hacheur.

 

www.fairchildsemi.com

LM2902,LM324/LM324A,LM224/

LM224A

Quad Operational Amplifier

Features

· Internally Frequency Compensated for Unity Gain

· Large DC Voltage Gain: 100dB

· Wide Power Supply Range:

LM224/LM224A, LM324/LM324A : 3V~32V (or #177;1.5 ~ 15V)

LM2902: 3V~26V (or #177;1.5V ~ 13V)

· Input Common Mode Voltage Range Includes Ground

· Large Output Voltage Swing: 0V to VCC -1.5V

· Power Drain Suitable for Battery Operation

Description

The LM324/LM324A,LM2902,LM224/LM224A consist of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range. Operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts. Application areas include transducer amplifier, DC gain blocks and all the conventional OP-AMP circuits which now can be easily implemented in single power supply systems.

14-SOP

14-DIP

1

1

OUT1

IN1 (-)

IN1 (+)

VCC

IN2 (+)

IN2 (-)

OUT2

Internal Block Diagram

1

14

2

3

4

5

6

2 3

_ + _

+

_

1

+

+

_

4

12

11

13

10

9

7 8

OUT4

IN4 (-)

IN4 (+)

GND

IN3 (+)

IN3 (-)

OUT3

Rev. 1.0.3

Schematic Diagram

(One Section Only)

VCC

GND

Q5 Q6

IN(-)

IN(+)

Q7

Q1

Q2

Q8

Q9

Q3

Q4

Q10

Q11

C1

Q13

Q12

Q14

Q17

Q15

Q18

Q16

Q19

R1

Q21

Q20

R2

OUTPUT

Absolute Maximum Ratings

Parameter

Symbol

LM224/LM224A

LM324/LM324A

LM2902

Unit

Power Supply Voltage

VCC

#177;16 or 32

#177;16 or 32

#177;13 or 26

V

Differential Input Voltage

VI(DIFF)

32

32

26

V

Input Voltage

VI

-0.3 to +32

-0.3 to +32

-0.3 to +26

V

Output Short Circuit to GND Vcc=15V, TA=25°C(one Amp)

-

Continuous

Continuous

Continuous

-

Power Dissipation, TA=25°C 14-DIP

14-SOP

PD

1310
640

1310
640

1310
640

mW

Operating Temperature Range

TOPR

-25 ~ +85

0 ~ +70

-40 ~ +85

°C

Storage Temperature Range

TSTG

-65 ~ +150

-65 ~ +150

-65 ~ +150

°C

 

Thermal Data

Parameter

Symbol

Value

Unit

Thermal Resistance Junction-Ambient Max.

 
 
 

14-DIP

Rèja

95

°C/W

14-SOP

 

195

 
 

Electrical Characteristics

(VCC = 5.0V, VEE = GND, TA = 25 LC, unless otherwise specified)

Parameter

Symbol

Conditions

LM224

LM324

LM2902

Unit

 

Typ.

Max.

Min.

Typ.

Max.

Min.

Typ.

Max.

 

VIO

VCM = 0V to VCC -1.5V

VO(P) = 1.4V, RS

= 0LI

-

1.5

5.0

-

1.5

7.0

-

1.5

7.0

mV

Input Offset Current

IIO

-

-

2.0

30

-

3.0

50

-

3.0

50

nA

Input Bias Current

IBIAS

-

-

40

150

-

40

250

-

40

250

nA

Common-Mode Input

Voltage Range

VI(R)

Note1

0

-

VCC
-1.5

0

VCC
-1.5

-

0

-

VCC
-1.5

V

Supply Current

ICC

RL = L1,VCC = 30V (all Amps)

-

1.0

3

-

1.0

3

-

1.0

3

mA

 

-

0.7

1.2

-

0.7

1.2

-

0.7

1.2

mA

Large Signal
Voltage Gain

GV

VCC = 15V,RLL2KLI VO(P) = 1V to 11V

50

100

-

25

100

-

-

100

-

V/
mV

Output Voltage Swing

VO(H)

Note1

RL =

2KLI

26

-

-

26

-

-

22

-

-

V

 

27

28

-

27

28

-

23

24

-

V

 

VCC = 5V,RLL10KLI

-

5

20

-

5

20

-

5

100

mV

Common-Mode
Rejection Ratio

CMRR

-

70

85

-

65

75

-

50

75

-

dB

Power Supply Rejection Ratio

PSRR

-

65

100

-

65

100

-

50

100

-

dB

Channel Separation

CS

f = 1KHz to 20KHz

-

120

-

-

120

-

-

120

-

dB

Short Circuit to GND

ISC

-

-

40

60

-

40

60

-

40

60

mA

Output Current

ISOURCE

VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P)

= 2V

20

40

-

20

40

-

20

40

-

mA

 

VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P)

= 2V

10

13

-

10

13

-

10

13

-

mA

 

12

45

-

12

45

-

-

-

-

LA

Differential Input Voltage

VI(DIFF)

-

-

-

VCC

-

-

VCC

-

-

VCC

V

 

Note :

1. VCC=30V for LM224 and LM324 , VCC = 26V for LM2902

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified)

The following specification apply over the range of -25°C = TA = + 85°C for the LM224; and the 0°C = TA = +70°C for the LM324 ; and the - 40°C = TA = +85°C for the LM2902

Parameter

Symbol

Conditions

LM224

LM324

LM2902

Unit

 

Typ.

Max.

Min.

Typ.

Max.

Min.

Typ.

Max.

 

VIO

VICM = 0V to VCC -1.5V

VO(P) = 1.4V, RS

= 0?

-

-

7.0

-

-

9.0

-

-

10.0

mV

Input Offset Voltage Drift

?VIO/?T

-

-

7.0

-

-

7.0

-

-

7.0

-

uV/°C

Input Offset Current

IIO

-

-

-

100

-

-

150

-

-

200

nA

Input Offset Current Drift

?IIO/?T

-

-

10

-

-

10

-

-

10

-

pA/°C

Input Bias Current

IBIAS

-

-

-

300

-

-

500

-

-

500

nA

Common-Mode Input Voltage Range

VI(R)

Note1

0

-

VCC
-2.0

0

-

VCC
-2.0

0

-

VCC
-2.0

V

Large Signal Voltage Gain

GV

VCC = 15V, RL = 2.0K?

VO(P) = 1V to 11V

25

-

-

15

-

-

15

-

-

V/mV

Output Voltage Swing

VO(H)

Note1

RL =

2K?

26

-

-

26

-

-

22

-

-

V

 

27

28

-

27

28

-

23

24

-

V

 

VCC = 5V,

RL=10K?

 

5

20

-

5

20

-

5

100

mV

Output Current

ISOURCE

VI(+) = 1V, VI(-) = 0V VCC = 15V, VO(P) = 2V

10

20

-

10

20

-

10

20

-

mA

 

VI(+) = 0V, VI(-) = 1V

VCC = 15V, VO(P) = 2V

10

13

-

5

8

-

5

8

-

mA

Differential Input Voltage

VI(DIFF)

-

-

-

VCC

-

-

VCC

-

-

VCC

V

 

Note:

1. VCC=30V for LM224 and LM324 , VCC = 26V for LM2902

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, TA = 25LC, unless otherwise specified)

Parameter

Symbol

Conditions

LM224A

LM324A

Unit

 

Typ.

Max.

Min.

Typ.

Max.

 

VIO

VCM = 0V to VCC -1.5V

VO(P) = 1.4V, RS = 0 u

-

1.0

3.0

-

1.5

3.0

mV

Input Offset Current

IIO

-

-

2

15

-

3.0

30

nA

Input Bias Current

IBIAS

-

-

40

80

-

40

100

nA

Input Common-Mode Voltage Range

VI(R)

VCC = 30V

0

-

VCC
-1.5

0

-

VCC
-1.5

V

Supply Current (All Amps)

ICC

VCC = 30V

-

1.5

3

-

1.5

3

mA

 

-

0.7

1.2

-

0.7

1.2

mA

Large Signal Voltage Gain

GV

VCC = 15V, RLL 2 Ku VO(P) = 1V to 11V

50

100

-

25

100

-

V/mV

Output Voltage Swing

VO(H)

Note1

RL = 2 Ku

26

-

-

26

-

-

V

 

RL = 10 Ku

27

28

-

27

28

-

V

 

VCC = 5V, RLL 10 Ku

-

5

20

-

5

20

mV

Common-Mode Rejection Ratio

CMRR

-

70

85

-

65

85

-

dB

Power Supply Rejection Ratio

PSRR

-

65

100

-

65

100

-

dB

Channel Separation

CS

f = 1KHz to 20KHz

-

120

-

-

120

-

dB

Short Circuit to GND

ISC

-

-

40

60

-

40

60

mA

Output Current

ISOURCE

VI(+) = 1V, VI(-) = 0V VCC = 15V

20

40

-

20

40

-

mA

 

VI(+) = 0V, VI(-) = 1V VCC = 15V, VO(P) = 2V

10

20

-

10

20

-

mA

 

12

50

-

12

50

-

LA

Differential Input Voltage

VI(DIFF)

-

-

-

VCC

-

-

VCC

V

 

Note:

1. VCC=30V for LM224A, LM324A

Electrical Characteristics (Continued)

(VCC = 5.0V, VEE = GND, unless otherwise specified)

The following specification apply over the range of -25°C = TA = + 85°C for the LM224A; and the 0°C = TA = +70°C for the LM324A

Parameter

Symbol

Conditions

LM224A

LM324A

Unit

 

Typ.

Max.

Min.

Typ.

Max.

 

VIO

VCM = 0V to VCC -1.5V VO(P) = 1.4V, RS = 0?

-

-

4.0

-

-

5.0

mV

Input Offset Voltage Drift

?VIO/?T

-

-

7.0

20

-

7.0

30

uV/°C

Input Offset Current

IIO

-

-

-

30

-

-

75

nA

Input Offset Current Drift

?IIO/?T

-

-

10

200

-

10

300

pA/°C

Input Bias Current

IBIAS

-

-

40

100

-

40

200

nA

Common-Mode Input Voltage Range

VI(R)

VCC = 30V

0

-

VCC
-2.0

0

-

VCC
-2.0

V

Large Signal Voltage Gain

GV

VCC = 15V, RL= 2.0K?

25

-

-

15

-

-

V/mV

Output Voltage Swing

VO(H)

VCC = 30V

RL = 2K?

26

-

-

26

-

-

V

 

27

28

-

27

28

-

 
 

VCC = 5V, RL= 10K?

-

5

20

-

5

20

mA

Output Current

ISOURCE

VI(+) = 1V, VI(-) = 0V VCC = 15V

10

20

-

10

20

-

mA

 

VI(+) = 0V, VI(-) = 1V VCC = 15V

5

8

-

5

8

-

mA

Differential Input Voltage

VI(DIFF)

-

-

-

VCC

-

-

VCC

V

 

Typical Performance Characteristics

Supply Voltage(v) Temperature Tj ( °C)

Figure 1. Input Voltage Range vs Supply Voltage Figure 2. Input Current vs Temperature

Supply Voltage (V)

Supply Voltage (V)

Figure 4. Voltage Gain vs Supply Voltage

Figure 3. Supply Current vs Supply Voltage

Frequency (Hz) Frequency (Hz)

Figure 5. Open Loop Frequency Response Figure 6. Common mode Rejection Ratio

Typical Performance Characteristics (Continued)

Figure 7. Slew Rate Figure 8. Voltage Follower Pulse Response

Figure 9. Large Signal Frequency Response Figure 10. Output Characteristics vs Current Sourcing

Figure 11. Output Characteristics vs Current Sinking Figure 12. Current Limiting vs Temperature

#1

#7

0.252 E0.008

6.40 E0.20

7.62

0.300

#14

#8

19.80 MAX 0.780

0.200

5.08

0.128 E0.008

3.25 E0.20

19.40 D0.20

0.764 D0.008

MAX

2.08

0.082

0.130 E0.012

3.30 E0.30

0.008

0.20

0.46 1110

0.018 LO.004

MIN

1.50 D0.10

0.059 LO.004

2.54

0.100

Mechanical Dimensions

Package

Dimensions in millimeters

14-DIP

Mechanical Dimensions (Continued)

Package

1.27

0.050

14-SOP

0.05

0.002

1.55 #177;0.10

0.061 #177;0.004

1.80 MAX 0.071

8.70

0.343 MAX

8.56 00.20

0.337 D0.008

3.95 #177;0.20

0.156 #177;0.008

0.60 #177;0.20

5.72

0.225

0.024 #177;0.008

0.019

0.47

(,,-..,, )

#1

#7

6.00 #177;0.30

0.236 #177;0.012

#8

#14

+0.10

-0.05

0.406

+0.004

-0.002

0.016

MIN

MAX0.10

MAX0.004

Dimensions in millimeters

GlobalOptoisolatorn

4N25

4N26

4N27

4N28

The 4N25, 4N26, 4N27 and 4N28 devices consist of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector.

· Most Economical Optoisolator Choice for Medium Speed, Switching Applications

· Meets or Exceeds All JEDEC Registered Specifications

·

6 1

STANDARD THRU HOLE

To order devices that are tested and marked per VDE 0884 requirements, the
suffix »V» must be included at end of part number. VDE 0884 is a test option.

Applications

· General Purpose Switching Circuits

· Interfacing and coupling systems of different potentials and impedances

· I/O Interfacing

· Solid State Relays

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

INPUT LED

SCHEMATIC

PIN 1. LED ANODE

2. LED CATHODE

3. N.C.

4. EMITTER

5. COLLECTOR

6. BASE

1

2

3

6

5

4

Reverse Voltage

 

VR

3

Volts

Forward Current -- Continuous

IF

60

mA

LED Power Dissipation @ TA = 25°C

with Negligible Power in Output Detector Derate above 25°C

PD

120
1.41

mW
mW/°C

OUTPUT TRANSISTOR

Collector-Emitter Voltage

VCEO

30

Volts

Emitter-Collector Voltage

VECO

7

Volts

Collector-Base Voltage

VCBO

70

Volts

Collector Current -- Continuous

IC

150

mA

Detector Power Dissipation @ TA = 25°C with Negligible Power in Input LED Derate above 25°C

PD

150
1.76

mW
mW/°C

TOTAL DEVICE

Isolation Surge Voltage(1)

(Peak ac Voltage, 60 Hz, 1 sec Duration)

VISO

7500

Vac(pk)

Total Device Power Dissipation @ TA = 25°C Derate above 25°C

PD

250
2.94

mW
mW/°C

Ambient Operating Temperature Range

TA

-55 to +100

°C

Storage Temperature Range

Tstg

-55 to +150

°C

Soldering Temperature (10 sec, 1/16? from case)

TL

260

°C

1. Isolation surge voltage is an internal device dielectric breakdown rating. 1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

 

4N25 4N26 4N27 4N28

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1)

Characteristic

Symbol

Min

Typ(1)

Max

Unit

INPUT LED

Forward Voltage (IF = 10 mA) TA = 25°C

VF

--

1.15

1.5

Volts

TA = -55°C

 

--

1.3

--

 

TA = 100°C

 

--

1.05

--

 

Reverse Leakage Current (VR = 3 V)

IR

--

--

100

uA

Capacitance (V = 0 V, f = 1 MHz)

CJ

--

18

--

pF

OUTPUT TRANSISTOR

Collector-Emitter Dark Current 4N25,26,27

(VCE = 10 V, TA = 25°C 4N28

(VCE = 10 V, TA = 100°C) All Devices

ICEO

--
--

1
1

50
100

nA

ICEO

--

1

--

uA

Collector-Base Dark Current (VCB = 10 V)

ICBO

--

0.2

--

nA

Collector-Emitter Breakdown Voltage (IC = 1 mA)

V(BR)CEO

30

45

--

Volts

Collector-Base Breakdown Voltage (IC = 100 uA)

V(BR)CBO

70

100

--

Volts

Emitter-Collector Breakdown Voltage (IE = 100 uA)

V(BR)ECO

7

7.8

--

Volts

DC Current Gain (IC = 2 mA, VCE = 5 V)

hFE

--

500

--

--

Collector-Emitter Capacitance (f = 1 MHz, VCE = 0)

CCE

--

7

--

pF

Collector-Base Capacitance (f = 1 MHz, VCB = 0)

CCB

--

19

--

pF

Emitter-Base Capacitance (f = 1 MHz, VEB = 0)

CEB

--

9

--

pF

COUPLED

Output Collector Current (IF = 10 mA, VCE = 10 V)

4N25,26
4N27,28

IC (CTR)(2)

2 (20)
1 (10)

7 (70)
5 (50)

--
--

mA (%)

Collector-Emitter Saturation Voltage (IC = 2 mA, IF = 50 mA)

VCE(sat)

--

0.15

0.5

Volts

Turn-On Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3)

ton

--

2.8

--

us

Turn-Off Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3)

toff

--

4.5

--

us

Rise Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3)

tr

--

1.2

--

us

Fall Time (IF = 10 mA, VCC = 10 V, RL = 100 ?)(3)

tf

--

1.3

--

us

Isolation Voltage (f = 60 Hz, t = 1 sec)(4)

VISO

7500

--

--

Vac(pk)

Isolation Resistance (V = 500 V)(4)

RISO

1011

--

--

?

Isolation Capacitance (V = 0 V, f = 1 MHz)(4)

CISO

--

0.2

--

pF

1. Always design to the specified minimum/maximum electrical limits (where applicable).

2. Current Transfer Ratio (CTR) = IC/IF x 100%.

3. For test circuit setup and waveforms, refer to Figure 11.

4. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

 

4N25 4N26 4N27 4N28

IF, LED INPUT CURRENT (mA)

IC, OUTPUT COLLECTOR CURRENT (NORMALIZED)

TYPICAL CHARACTERISTICS

TA = -55°C

25°C

100°C

PULSE ONLY PULSE OR DC

1 10 100 1000

2

VF, FORWARD VOLTAGE (VOLTS)

1.8

1.6

1.4

1.2

1

0.01 0.5 1

2 5 10 20 50

10

1

0.1

NORMALIZED TO:
IF = 10 mA

IF, LED FORWARD CURRENT (mA)

Figure 1. LED Forward Voltage versus Forward Current

Figure 2. Output Current versus Input Current

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

-60 -40 -20 0 20 40 60 80 100

TA, AMBIENT TEMPERATURE (°C)

IC, OUTPUT COLLECTOR CURRENT (NORMALIZED)

IC, COLLECTOR CURRENT (mA)

28

24

20

16

12

4

8

0

2 mA

1 mA

0 1 2 3 4 5 6 7 8 9 10

IF = 10 mA

5 mA

1 0.7 0.5

0.2

0.1

10

2

7
5

NORMALIZED TO TA = 25°C

Figure 3. Collector Current versus Figure 4. Output Current versus Ambient Temperature

Collector-Emitter Voltage

1

lac, COLLECTOR-EMITTER DARK CURRENT
(NORMALIZED)

0.1

00

10

1

NORMALIZED TO:
VCE = 10 V
TA = 25°C

VCE = 30 V

10 V

0 20 40 60 80 100

TA, AMBIENT TEMPERATURE (°C)

t, TIME (3)

100

50

20

10

5

2

1

0.1 0.2 0.5 1 2 5 10 20 50 100

IF, LED INPUT CURRENT (mA)

RL = 1000

RL = 100{

{

tf

tr

tr

tf

VCC = 10 V

Figure 5. Dark Current versus Ambient Temperature Figure 6. Rise and Fall Times

(Typical Values)

 

4N25 4N26 4N27 4N28

ton TURN--ON TIME (C)

100 70 50

20

10 7 5

2

1

RL = 1000

100

10

VCC = 10 V

0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70100

IF, LED INPUT CURRENT (mA)

Figure 7. Turn-On Switching Times
(Typical Values)

IC ' TYPICAL COLLECTOR CURRENT (mA)

4

3

2

1

IF = 0

IB = 7 uA

4 uA

5 uA

3 uA

2 uA

1 uA

6 uA

0 2 4 6 8 10 12 14 16 18 20

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

toil TURN --OFF TIME (3)

100 70 50

20

10

7

5

2

1

RL = 1000

100

10

VCC = 10 V

0.1 0.2 0.5 0.7 1 2 5 7 10 20 50 70100

IF, LED INPUT CURRENT (mA)

Figure 8. Turn-Off Switching Times
(Typical Values)

C, CAPACITANCE (pF)

20
18

16
14
12

10

8

6

4

2
0

CLED
CCB

CCE

CEB

f = 1 MHz

0.05 0.1 0.2 0.5 1 2 5 10 20 50

V, VOLTAGE (VOLTS)

TEST CIRCUIT

VCC = 10 V

WAVEFORMS

IF = 10 mA

RL = 100 ?

INPUT

OUTPUT

90%

tr

ton

tf toff

INPUT PULSE

10%

OUTPUT PULSE

Figure 9. DC Current Gain (Detector Only) Figure 10. Capacitances versus Voltage

 

4N25 4N26 4N27 4N28

PACKAGE DIMENSIONS

0.13 (0.005)

M

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

DIM

INCHES

MILLIMETERS

MIN

MAX

MIN

MAX

A

0.320

0.350

8.13

8.89

B

0.240

0.260

6.10

6.60

C

0.115

0.200

2.93

5.08

D

0.016

0.020

0.41

0.50

E

0.040

0.070

1.02

1.77

F

0.010

0.014

0.25

0.36

G

0.100 BSC

2.54 BSC

J

0.008

0.012

0.21

0.30

K

0.100

0.150

2.54

3.81

L

0.300 BSC 7.62 BSC

M

0

15

0

15

N

0.015

0.100

0.38

2.54

STYLE 1:

PIN 1. ANODE

2. CATHODE

3. NC

4. EMITTER

5. COLLECTOR

6. BASE

THRU HOLE

6 4

1 3

-A-

-B-

C

K

L

J 6 PL

M

0.13 (0.005)

M

T

G

D

6 PL

-T-

SEATING PLANE

E 6 PL

F 4 PL

N

B

M

A M

T

A

M

B M

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

 

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A

0.320

0.350

8.13

8.89

B

0.240

0.260

6.10

6.60

C

0.115

0.200

2.93

5.08

D

0.016

0.020

0.41

0.50

E

0.040

0.070

1.02

1.77

F

0.010

0.014

0.25

0.36

G

0.100 BSC

2.54 BSC

H

0.020

0.025

0.51

0.63

J

0.008

0.012

0.20

0.30

K

0.006

0.035

0.16

0.88

L

0.320 BSC

8.13 BSC

S

0.332 0.390

8.43 9.90

SURFACE MOUNT

6 4

1

-A-

3

-B-

B

M

E 6 PL

F 4 PL

G

D 6 PL

0.13 (0.005)

H

C

M

T

A

M

B M

L

K 6 PL

0.13 (0.005)

J

M

-T-

SEATING PLANE

T

A M

4N25 4N26 4N27 4N28

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A

0.320

0.350

8.13

8.89

B

0.240

0.260

6.10

6.60

C

0.115

0.200

2.93

5.08

D

0.016

0.020

0.41

0.50

E

0.040

0.070

1.02

1.77

F

0.010

0.014

0.25

0.36

G

0.100 BSC

2.54 BSC

J

0.008

0.012

0.21

0.30

K

0.100

0.150

2.54

3.81

L

0.400

0.425

10.16

10.80

N

0.015

0.040

0.38

1.02

0.4" LEAD SPACING

D 6 PL

6 4

1 3

-A-

G

N

-B-

K

C

L

J

F 4 PL

-T-

SEATING

PLANE

E 6 PL

T

A

B M

M

M

0.13 (0.005)

PowerMOS transistor IRF840

Avalanche energy rated

FEATURES SYMBOL QUICK REFERENCE DATA

·

d

g

 

s

VDSS = 500 V
ID = 8.5 A

RDS(ON) = 0.85 Ù

Repetitive Avalanche Rated

· Fast switching

· High thermal cycling performance

· Low thermal resistance

GENERAL DESCRIPTION PINNING SOT78 (TO220AB)

N-channel, enhancement mode field-effect power transistor, intended for use in off-line switched mode power supplies, T.V. and computer monitor power supplies, d.c. to d.c. converters, motor control circuits and general purpose switching applications.

The IRF840 is supplied in the SOT78 (TO220AB) conventional leaded package.

PIN

DESCRIPTION

1

2

3
tab

gate drain source

drain

tab

 

1 2 3

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

VDSS

Drain-source voltage

Tj = 25 °C to 150°C

-

500

V

VDGR

Drain-gate voltage

Tj = 25 °C to 150°C; RGS = 20 kÙ

-

500

V

VGS

Gate-source voltage

 

-

#177; 30

V

ID

Continuous drain current

Tmb = 25 °C; VGS = 10 V

-

8.5

A

 
 

Tmb = 100 °C; VGS = 10 V

-

5.4

A

IDM

Pulsed drain current

Tmb = 25 °C

-

34

A

PD

Total dissipation

Tmb = 25 °C

-

147

W

Tj, Tstg

Operating junction and storage temperature range

 

- 55

150

°C

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL

PARAMETER

CONDITIONS

MIN.

MAX.

UNIT

EAS

Non-repetitive avalanche energy

Unclamped inductive load, IAS = 7.4 A;

tp = 0.22 ms; Tj prior to avalanche = 25°C;

-

531

mJ

 
 

VDD = 50 V; RGS = 50 Ù; VGS = 10 V; refer to fig:17

 
 
 

EAR

Repetitive avalanche energy1

IAR = 8.5 A; tp = 2.5 ìs; Tj prior to

avalanche = 25°C; RGS = 50 Ù; VGS = 10 V; refer to fig:18

-

13

mJ

IAS, IAR

Repetitive and non-repetitive avalanche current

 

-

8.5

A

1 pulse width and repetition rate limited by Tj max.

PowerMOS transistor IRF840

Avalanche energy rated

THERMAL RESISTANCES

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

Rth j-mb Rth j-a

Thermal resistance junction to mounting base

Thermal resistance junction to ambient

in free air

-
-

-
60

0.85
-

K/W
K/W

ELECTRICAL CHARACTERISTICS

Tj = 25 °C unless otherwise specified

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

V(BR)DSS

Drain-source breakdown voltage

VGS = 0 V; ID = 0.25 mA

500

-

-

V

ÄV(BR)DSS / ÄTj

Drain-source breakdown voltage temperature coefficient

VDS = VGS; ID = 0.25 mA

-

0.1

-

%/K

RDS(ON)

Drain-source on resistance

VGS = 10 V; ID = 4.8 A

-

0.6

0.85

Ù

VGS(TO)

Gate threshold voltage

VDS = VGS; ID = 0.25 mA

2.0

3.0

4.0

V

gfs

Forward transconductance

VDS = 30 V; ID = 4.8 A

3.5

6

-

S

IDSS

Drain-source leakage current

VDS = 500 V; VGS = 0 V

-

1

25

ìA

 
 

VDS = 400 V; VGS = 0 V; Tj = 125 °C

-

40

250

ìA

IGSS

Gate-source leakage current

VGS = #177;30 V; VDS = 0 V

-

10

200

nA

Qg(tot)

Total gate charge

ID = 8.5 A; VDD = 400 V; VGS = 10 V

-

55

80

nC

Qgs

Gate-source charge

 

-

5.5

7

nC

Qgd

Gate-drain (Miller) charge

 

-

30

45

nC

td(on)

Turn-on delay time

VDD = 250 V; RD = 30 Ù;

-

18

-

ns

tr

Turn-on rise time

RG = 9.1 Ù

-

37

-

ns

td(off)

Turn-off delay time

 

-

80

-

ns

tf

Turn-off fall time

 

-

36

-

ns

Ld

Internal drain inductance

Measured from tab to centre of die

-

3.5

-

nH

Ld

Internal drain inductance

Measured from drain lead to centre of die

-

4.5

-

nH

Ls

Internal source inductance

Measured from source lead to source bond pad

-

7.5

-

nH

Ciss

Input capacitance

VGS = 0 V; VDS = 25 V; f = 1 MHz

-

960

-

pF

Coss

Output capacitance

 

-

140

-

pF

Crss

Feedback capacitance

 

-

80

-

pF

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Tj = 25 °C unless otherwise specified

SYMBOL

PARAMETER

CONDITIONS

MIN.

TYP.

MAX.

UNIT

IS

Continuous source current

Tmb = 25°C

-

-

8.5

A

 

(body diode)

 
 
 
 
 

ISM

Pulsed source current (body diode)

Tmb = 25°C

-

-

34

A

VSD

Diode forward voltage

IS = 8.5 A; VGS = 0 V

-

-

1.2

V

trr

Reverse recovery time

IS = 8.5 A; VGS = 0 V; dI/dt = 100 A/ìs

-

440

-

ns

Qrr

Reverse recovery charge

 

-

6.4

-

ìC

120 110 100 90 80 70 60 50 40 30 20 10

0

Fig.1. Normalised power dissipation.

PD% = 100·PD/PD 25 °C = f(Tmb)

0 20 40 60 80 100 120 140

Tmb / C

PD% Normalised Power Derating

120 110 100 90 80 70 60 50 40 30 20 10

0

Fig.2. Normalised continuous drain current.
ID% = 100
·ID/ID 25 °C = f(Tmb); conditions: VGS = 10 V

0 20 40 60 80 100 120 140

Tmb / C

ID% Normalised Current Derating

ID / A

100

10

DC

1

100 ms

0.1

Fig.3. Safe operating area. Tmb = 25 °C
ID & IDM = f(VDS); IDM single pulse; parameter tp

1 10 100 1000

VDS / V

tp = 10 us

100 us 1 ms

10 ms

ID, Drain current (Amps

Tj = 25 C

 
 
 
 

10 V

 
 
 
 

7 V

6.5 V

 
 

6 V

 
 
 
 
 

5.5 V

 
 
 
 
 

5 V

 
 
 
 

= 4.5 V

 
 
 
 

VGS

 
 
 
 
 
 

0 5 10 15 20 25 30

VDS, Drain-Source voltage (Volts)

Fig.5. Typical output characteristics.
ID = f(VDS); parameter VGS

30

25

20

15

10

5

0

RDS(on), Drain-Source on resistance (Ohms

4.5 V

 
 

5 V

5.5 V

VGS = 6 V

Tj = 25 C

 
 
 
 
 
 

6.5 V

7 V

10 V

 
 
 
 
 

0 5 10 15 20 25

ID, Drain current (Amps)

Fig.6. Typical on-state resistance.
RDS(ON) = f(ID); parameter VGS

2

1.5

1

0.5

0

D = 0.5

0.2

0.1

0.1

0.05

0.02

0.01

tp D = tp

T

PD

single pulse

t

T

1ms 10ms 100ms 1s

tp, pulse width (s)

0.0011us 10us 100us

1 Zth j-mb, Transient thermal impedance (K/W)

Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tiT

PowerMOS transistor IRF840

Avalanche energy rated

ID, Drain current (Amps)

25

VDS > ID x RDS(on)max

20

15

10

5

Tj = 150 C

Tj = 25 C

0

0 2 4 6 8 10

Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj

VGS, Gate-Source voltage (Volts)

gfs, Transconductance (S)

10

VDS > ID x RDS(on)max

Tj = 25 C

8

150 C

6

4

2

0

ID, Drain current (A)

0 5 10 15 20 25

Fig.8. Typical transconductance.
gfs = f(ID); parameter Tj

Normalised RDS(ON) = f(Tj)

a

2

1

0

Fig.9. Normalised drain-source on-state resistance.

a = RDS(ON)/RDS(ON)25 °C = f(Tj); ID = 4.25 A; VGS = 10 V

-60 -40 -20 0 20 40 60 80 100 120 140

Tj / C

VGS(TO) / V

max.

typ.

4

3

min.

2

1

Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 0.25 mA; VDS = VGS

0

-60 -40 -20 0 20 40 60 80 100 120 140

Tj / C

SUB-THRESHOLD CONDUCTION

ID / A

1E-01

1E-02

2 %

typ

98 %

1E-03

1E-04

1E-05

1E-06

Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 °C; VDS = VGS

0 1 2 3 4

VGS / V

Junction capacitances (pF)

10000

Ciss

1000

Coss

100

Crss

10

Fig.12. Typical capacitances, Ciss, Coss, Crss. C = f(VDS); conditions: VGS = 0 V; f = 1 MHz

1 10 100 1000

VDS, Drain-Source voltage (Volts)

PowerMOS transistor IRF840

Avalanche energy rated

PowerMOS transistor IRF840

Avalanche energy rated

PHP8N50E

15

ID = 8.5A Tj = 25 C

14

13

200V

12

11

10

100V

9

8

VDD = 400 V

7

6

5

4

3

2

1

0

Gate-source voltage, VGS (V)

IF, Source-Drain diode current (Amps)

VGS = 0 V

15

Tj = 25 C

5

0

20

10

150 C

Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG); parameter VDS

0 20 40 60 80

Gate charge, QG (nC)

Switching times (ns)

1000

VDD = 250 V

VGS = 10 V

RD = 30 Ohms

Tj = 25 C

td(off)

100

tf

tr

td(on)

10

RG, Gate resistance (Ohms)

Fig.14. Typical switching times; td(on), tr, td(off), tf = f(RG)

0 10 20 30 40 50 60

1.15

V(BR)DSS @ Tj

V(BR)DSS @ 25 C

1.1

1.05

1

0.95

0.9

0.85

Tj, Junction temperature (C)

Fig.15. Normalised drain-source breakdown voltage;

V(BR)DSS/V(BR)DSS 25 °C = f(Tj)

100 50 0 50 100 150

Normalised Drain-source breakdown voltage

0 0.2 0.4 0.6 0.8 1 1.2 1.4

VSDS, Source-Drain voltage (Volts)

10

25 C

Tj prior to avalanche = 125 C

1

0.1

Fig.17. Maximum permissible non-repetitive
avalanche current (IAS) versus avalanche time (tp);
unclamped inductive load

1E-06 1E-05 1E-04 1E-03 1E-02

Avalanche time, tp (s)

Non-repetitive Avalanche current, IAS (A)

VDS

ID

tp

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PHP8N50E

10

Tj prior to avalanche = 25 C

125 C

1

0.1

PHP8N50E

0.01

Fig.18. Maximum permissible repetitive avalanche
current (IAR) versus avalanche time (tp)

1E-06 1E-05 1E-04 1E-03 1E-02

Avalanche time, tp (s)

Maximum Repetitive Avalanche Current, IAR (A)

Fig.16. Source-Drain diode characteristic. IF = f(VSDS); parameter Tj

PowerMOS transistor IRF840

Avalanche energy rated

MECHANICAL DATA

Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220 SOT78

L2(1)

b1

D1

e e

1

2

3

b

L1

q

0 5 10 mm

scale

DIMENSIONS (mm are the original dimensions)

UNIT

A

A1

b

b1

c

D

D1

E

e

L

L1

(1) L2 max.

P

q

Q

mm

4.5
4.1

1.39
1.27

0.9
0.7

1.3
1.0

0.7
0.4

15.8
15.2

6.4
5.9

10.3
9.7

2.54

15.0
13.5

3.30
2.79

3.0

3.8
3.6

3.0
2.7

2.6
2.2

Note

1. Terminals in this zone are not tinned.

OUTLINE
VERSION

REFERENCES

EUROPEAN
PROJECTION

ISSUE DATE

IEC

JEDEC

EIAJ

 

SOT78

 

TO-220

 
 
 

97-06-11

 

c

A

A1

Q

Fig.19. SOT78 (TO220AB); pin 2 connected to mounting base (Net mass:2g)

Notes

1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.

2. Refer to mounting instructions for SOT78 (TO220AB) package.

3. Epoxy meets UL94 V0 at 1/8".

[1] GLAISE Christian. "Introduction à l'Électrotechnique et à l'Électronique de puissance". Collection médiathèque e-EEA du club EEA. Version du 9 septembre 2002. Disponible sur le site http://www.geii.iut-nimes.fr/cg/ de l'IUT de Nîmes.

[3] GASTON Bachelard in "la Formation de l'esprit scientifique" , les composants d'électronique de puissance. Version du septembre 2004.

[3]. MOUSTAFAOUI Dris, OUAGUENI Abdelmadjid, "Étude comparative de différentes stratégies de commande des variateurs de vitesse", Mémoire de fin d'étude cycle licence département d'électrotechnique, université de M'sila 2009, dirigé par: Mr : KHODJA Djalal Eddine.

[4] MAARAD Samir, BELKHIRI Walid, "Maintenance des maquettes didactiques de l'électronique de puissance". Mémoire de fin d'étude cycle ingénieur département d'électrotechnique, université de Batna 2010, dirigé par Ms : KERCHA Mbarka.

[6] www.google.com, ChapitreII_Les_interrupteurs_semi_conducteurs.pdf.

[8] Cours Énergie et convertisseurs d'énergie, "Chapitre 2 interrupteurs semi-conducteurs de puissance", Université de Savoie Licence EEA.

[10] ACHORA Atef, HAMDI Farid, "Étude et réalisation d'une maquette d'un hacheur série à base d'une MOSFET", Mémoire de fin d'étude cycle DUEA département d'électrotechnique, université de Batna, dirigé par
Mr: Bendaas Med Lokman.

[8] Cours d'électronique de puissance de 4éme année machine de Mr : Bendaas Med Lokman.

[9]

[11] http : // ww.pwrx.com.

[12] www.google.com, cours_hacheurs.pdf.

[13] http : // validator.w3.org.

[14] www.google.com, cours_hacheur4-quadrants.

[16] RAHMOUNI Abderrezak , "Commande d'un moteur à courant continu (assistée par le PIC16F84)". Mémoire de fin d'étude cycle ingénieur département d'électrotechnique, université de Batna 2004, dirigé par Mr : A.H-Haddoun et Mr : S.Drid.

[18] DRAIFA Samir, MEBARKIA Abderaouf, "Étude et réalisation d'une maquette didactique pour l'électronique de puissance (Redresseur - Gradateur - Hacheur)", Mémoire de fin d'étude cycle ingénieur département d'électrotechnique, université de Batna 2008, dirigé par Mr : Bendaas Med Lokman.

[20] LAIB Hichem, BAIDI Badiss, "Étude et réalisation d'une carde de commande d'un thyristor et d'un hacheur". Mémoire de fin d'étude cycle ingénieur département d'électrotechnique, université de Batna 2005, dirigé par Mr : Bendaas Med Lokman.

http : // www.eupec.com.

[10] BOUKRANA Lilia, "Étude et réalisation d'un hacheur réversible en tension", Mémoire de fin d'étude cycle DUEA département d'électrotechnique, université de Batna 2008, dirigé par Mr. Bendaas Med Lokman.

précédent sommaire










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard