Conclusion : grá®â(A®F B),
ó] ® ô = ?????grá(A)
gr(F)
de gr(F)-algèbres
graduées à involutions.
59 A.Belkhadir
60
Bibliographie
[1] Z.I. Borevich and I.R. Chafarevich (traduit par M et J-l
Verly). Théorie des nombres. Gauthier-Villars Paris, 1967.
[2] T.Y. Lam. Lectures on Modules and Rings.
Springer-Verlag, 1999.
[3] P. Morandi. The henselization of valued division algebra.
J. Algebra, (122) :232- 243, 1989.
[4] R.S. Pierce. Associative Algebras.
Springer-Verlag, 1982.
[5] Elbert M. Pirtle. Noncommutative valuation rings.
Publications de l'Institut Mathématique. Nouvelle série, tome
39(53), pages 83-87, 1986.
[6] O.F.G. Schilling. Noncommutative valuations. Bull.
Amer. Math. Soc, (51) :297- 304, 1945.
[7] Adrian R. Wadsworth. Extending valuations to finite
dimensional division algebras. American Mathematical Society, (1)
:20-22, 1986.
[8] Adrian R. Wadsworth. Valuation Theory on Finite
Dimensional Division Algebras. Vol 1. Fields Institute Communications,
1999.
[9] J.-P. Tignol A. R. Wadsworth. Value functions and
associated graded rings for semisimple algebras. American Mathematical
Society. Vol 362, (2) :687-726, 2010.
[10] J.-P. Tignol A. R. Wadsworth. Valuations on algebras
with involution. Mathe-matische Annalen, (351) :109-148, 2011.
|