Annexe
115
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à travers
l'excès de confiance et le comportement grégaire.
+ Les entreprises tunisiennes qui composent
l'échantillon utilisé au niveau des
trois chapitres sont :
ASTREE, Air Liquide Tunisie, STIL ,BH, ICF, AMS, Tunisie Leasing,
Amen Bank, SPDIT, UIB, BNA, ATB, TUNISAIR, BT, ALKIMIA, UBCI, STB, BS,
BIAT,CIL.
+ Tableau 1.1 : Statistiques descriptives de la
série des prix
Date: 09/26/09 Time: 17:54
Sample: 1997 2008
|
DIVIDENDE
|
Mean
|
1.122333
|
Median
|
1.213000
|
Maximum
|
1.528000
|
Minimum
|
0.008000
|
Std. Dev.
|
0.382530
|
Skewness
|
-2.218016
|
Kurtosis
|
7.304477
|
Jarque-Bera
|
19.10345
|
Probability
|
0.000071
|
Sum
|
13.46800
|
Sum Sq. Dev.
|
1.609625
|
Observations
|
12
|
116
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire.
Date: 09/26/09 Time: 17:55
Sample: 1997 2008
|
PRIX
|
Mean
|
36.03792
|
Median
|
35.07900
|
Maximum
|
52.68800
|
Minimum
|
28.39500
|
Std. Dev.
|
7.669389
|
Skewness
|
0.789453
|
Kurtosis
|
2.742842
|
Jarque-Bera
|
1.279537
|
Probability
|
0.527415
|
Sum
|
432.4550
|
Sum Sq. Dev.
|
647.0149
|
Observations
|
12
|
117
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
constante « en niveau »
Null Hypothesis: PRIX has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -3.192777
0.1361
Test critical values: 1% level -5.124875
5% level -3.933364
10% level -3.420030
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 11
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(PRIX)
Method: Least Squares
Date: 09/26/09 Time: 17:56
Sample (adjusted): 1998 2008
Included observations: 11 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
PRIX(-1) C @TREND(1997)
|
-1.123187 31.88795 1.529708
|
0.351790 -3.192777
10.60629 3.006513
0.796726 1.919992
|
0.0128 0.0169 0.0911
|
R-squared
|
0.560519
|
Mean dependent var
|
1.478455
|
Adjusted R-squared
|
0.450649
|
S.D. dependent var
|
9.212354
|
S.E. of regression
|
6.828033
|
Akaike info criterion
|
6.906951
|
Sum squared resid
|
372.9763
|
Schwarz criterion
|
7.015468
|
Log likelihood
|
-34.98823
|
Hannan-Quinn criter.
|
6.838547
|
F-statistic
|
5.101646
|
Durbin-Watson stat
|
2.060256
|
Prob(F-statistic)
|
0.037304
|
|
|
118
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
en niveau »
Null Hypothesis: PRIX has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -2.240283
0.2043
Test critical values: 1% level -4.200056
5% level -3.175352
10% level -2.728985
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 11
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(PRIX)
Method: Least Squares
Date: 09/26/09 Time: 17:59
Sample (adjusted): 1998 2008
Included observations: 11 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
PRIX(-1)
|
-0.733829
|
0.327561 -2.240283
|
0.0518
|
C
|
27.34292
|
11.78112 2.320911
|
0.0454
|
R-squared
|
0.358008
|
Mean dependent var
|
1.478455
|
Adjusted R-squared
|
0.286676
|
S.D. dependent var
|
9.212354
|
S.E. of regression
|
7.780619
|
Akaike info criterion
|
7.104115
|
Sum squared resid
|
544.8423
|
Schwarz criterion
|
7.176459
|
Log likelihood
|
-37.07263
|
Hannan-Quinn criter.
|
7.058511
|
F-statistic
|
5.018866
|
Durbin-Watson stat
|
2.058506
|
Prob(F-statistic)
|
0.051819
|
|
|
119
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
différence première »
Null Hypothesis: D(PRIX) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.524365
0.0072
Test critical values: 1% level -4.297073
5% level -3.212696
10% level -2.747676
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 10
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(PRIX,2)
Method: Least Squares
Date: 09/26/09 Time: 18:02
Sample (adjusted): 1999 2008
Included observations: 10 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
D(PRIX(-1))
|
-1.454486
|
0.321478 -4.524365
|
0.0019
|
C
|
2.021124
|
2.928067 0.690259
|
0.5096
|
R-squared
|
0.719001
|
Mean dependent var
|
0.611000
|
Adjusted R-squared
|
0.683876
|
S.D. dependent var
|
16.37488
|
S.E. of regression
|
9.206756
|
Akaike info criterion
|
7.454609
|
Sum squared resid
|
678.1149
|
Schwarz criterion
|
7.515126
|
Log likelihood
|
-35.27304
|
Hannan-Quinn criter.
|
7.388222
|
F-statistic
|
20.46988
|
Durbin-Watson stat
|
2.118155
|
Prob(F-statistic)
|
0.001939
|
|
|
120
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire.
« Validation empirique sur la BVMT »
tendance et constante « en niveau
»
Null Hypothesis: DIVIDENDE has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.320162
0.8241
Test critical values: 1% level -5.124875
5% level -3.933364
10% level -3.420030
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 11
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(DIVIDENDE)
Method: Least Squares
Date: 09/26/09 Time: 18:03
Sample (adjusted): 1998 2008
Included observations: 11 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
DIVIDENDE(-1) C @TREND(1997)
|
-1.101464 1.503915 -0.044551
|
0.834340 -1.320162
1.010099 1.488878
0.040171 -1.109018
|
0.2233 0.1748 0.2996
|
R-squared
|
0.315103
|
Mean dependent var
|
-0.111182
|
Adjusted R-squared
|
0.143879
|
S.D. dependent var
|
0.446674
|
S.E. of regression
|
0.413293
|
Akaike info criterion
|
1.297681
|
Sum squared resid
|
1.366489
|
Schwarz criterion
|
1.406198
|
Log likelihood
|
-4.137246
|
Hannan-Quinn criter.
|
1.229276
|
F-statistic
|
1.840297
|
Durbin-Watson stat
|
1.430533
|
Prob(F-statistic)
|
0.220039
|
|
|
121
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
constante « en niveau »
Null Hypothesis: DIVIDENDE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.545842
0.4747
Test critical values: 1% level -4.200056
5% level -3.175352
10% level -2.728985
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 11
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(DIVIDENDE)
Method: Least Squares
Date: 09/26/09 Time: 18:06
Sample (adjusted): 1998 2008
Included observations: 11 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
DIVIDENDE(-1)
|
-1.281239
|
0.828830 -1.545842
|
0.1565
|
C
|
1.456589
|
1.022007 1.425224
|
0.1878
|
R-squared
|
0.209807
|
Mean dependent var
|
-0.111182
|
Adjusted R-squared
|
0.122008
|
S.D. dependent var
|
0.446674
|
S.E. of regression
|
0.418539
|
Akaike info criterion
|
1.258872
|
Sum squared resid
|
1.576573
|
Schwarz criterion
|
1.331216
|
Log likelihood
|
-4.923795
|
Hannan-Quinn criter.
|
1.213269
|
F-statistic
|
2.389626
|
Durbin-Watson stat
|
1.220381
|
Prob(F-statistic)
|
0.156544
|
|
|
122
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
tendance ni constante « en niveau
»
Null Hypothesis: DIVIDENDE has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.014160
0.2593
Test critical values: 1% level -2.792154
5% level -1.977738
10% level -1.602074
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 11
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(DIVIDENDE)
Method: Least Squares
Date: 09/26/09 Time: 18:07
Sample (adjusted): 1998 2008
Included observations: 11 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
DIVIDENDE(-1)
|
-0.109011
|
0.107489 -1.014160
|
0.3344
|
R-squared
|
0.031464
|
Mean dependent var
|
-0.111182
|
Adjusted R-squared
|
0.031464
|
S.D. dependent var
|
0.446674
|
S.E. of regression
|
0.439591
|
Akaike info criterion
|
1.280563
|
Sum squared resid
|
1.932400
|
Schwarz criterion
|
1.316735
|
Log likelihood
|
-6.043094
|
Hannan-Quinn criter.
|
1.257761
|
Durbin-Watson stat
|
1.797977
|
|
|
123
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
tendance ni constante « en différence
première »
Null Hypothesis: D(DIVIDENDE) has a unit root Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=2)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -3.022920
0.0067
Test critical values: 1% level -2.816740
5% level -1.982344
10% level -1.601144
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 10
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(DIVIDENDE,2) Method: Least Squares
Date: 09/26/09 Time: 18:37
Sample (adjusted): 1999 2008
Included observations: 10 after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
D(DIVIDENDE(-1))
|
-1.610822
|
0.532870 -3.022920
|
0.0144
|
R-squared
|
0.488349
|
Mean dependent var
|
-0.106000
|
Adjusted R-squared
|
0.488349
|
S.D. dependent var
|
0.633078
|
S.E. of regression
|
0.452840
|
Akaike info criterion
|
1.348082
|
Sum squared resid
|
1.845573
|
Schwarz criterion
|
1.378340
|
Log likelihood
|
-5.740409
|
Hannan-Quinn criter.
|
1.314888
|
Durbin-Watson stat
|
1.277417
|
|
|
124
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
modèle avec tendance et constante « en
niveau »
Null Hypothesis: RENDEMENT has a unit root Exogenous: Constant,
Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.967535
0.0011
Test critical values: 1% level -4.165756
5% level -3.508508
10% level -3.184230
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(RENDEMENT) Method: Least Squares
Date: 05/09/10 Time: 14:48
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
RENDEMENT(-1) C @TREND(2005M01)
|
-0.718813 0.769962 0.016353
|
0.144702 -4.967535
0.223458 3.445670
0.006441 2.538678
|
0.0000 0.0013 0.0147
|
R-squared
|
0.360049
|
Mean dependent var
|
0.021498
|
Adjusted R-squared
|
0.330960
|
S.D. dependent var
|
0.649914
|
S.E. of regression
|
0.531596
|
Akaike info criterion
|
1.635836
|
Sum squared resid
|
12.43415
|
Schwarz criterion
|
1.753930
|
Log likelihood
|
-35.44214
|
Hannan-Quinn criter.
|
1.680276
|
F-statistic
|
12.37761
|
Durbin-Watson stat
|
1.977557
|
Prob(F-statistic)
|
0.000054
|
|
|
125
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
du marché : modèle avec tendance et
constante « en niveau »
Null Hypothesis: VOLUME has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -9.636677
0.0000
Test critical values: 1% level -4.165756
5% level -3.508508
10% level -3.184230
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(VOLUME)
Method: Least Squares
Date: 05/04/10 Time: 13:44
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
VOLUME(-1) C @TREND(2005M01)
|
-1.361640 0.039840 -0.000135
|
0.141298 -9.636677
0.007554 5.274238
0.000232 -0.581549
|
0.0000 0.0000 0.5638
|
R-squared
|
0.678686
|
Mean dependent var
|
-0.000285
|
Adjusted R-squared
|
0.664080
|
S.D. dependent var
|
0.037263
|
S.E. of regression
|
0.021597
|
Akaike info criterion
|
-4.770832
|
Sum squared resid
|
0.020523
|
Schwarz criterion
|
-4.652738
|
Log likelihood
|
115.1146
|
Hannan-Quinn criter.
|
-4.726393
|
F-statistic
|
46.46877
|
Durbin-Watson stat
|
2.099563
|
Prob(F-statistic)
|
0.000000
|
|
|
126
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
du marché : modèle avec constante «
en niveau »
Null Hypothesis: VOLUME has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -9.694405
0.0000
Test critical values: 1% level -3.577723
5% level -2.925169
10% level -2.600658
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(VOLUME)
Method: Least Squares
Date: 05/04/10 Time: 13:51
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
VOLUME(-1)
|
-1.358968
|
0.140181 -9.694405
|
0.0000
|
C
|
0.036525
|
0.004919 7.425439
|
0.0000
|
R-squared
|
0.676216
|
Mean dependent var
|
-0.000285
|
Adjusted R-squared
|
0.669021
|
S.D. dependent var
|
0.037263
|
S.E. of regression
|
0.021438
|
Akaike info criterion
|
-4.805729
|
Sum squared resid
|
0.020680
|
Schwarz criterion
|
-4.726999
|
Log likelihood
|
114.9346
|
Hannan-Quinn criter.
|
-4.776102
|
F-statistic
|
93.98150
|
Durbin-Watson stat
|
2.088023
|
Prob(F-statistic)
|
0.000000
|
|
|
127
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Figure 2.2 : Corrélogramme de la série
des rendements mensuels du marché
Date: 05/10/10 Time: 11:12
Sample: 2005M01 2008M12 Included observations: 48
|
|
|
|
|
|
|
Autocorrelation
|
Partial Correlation
|
|
AC
|
PAC
|
Q-Stat
|
Prob
|
. |***
|
|
|
. |***
|
|
|
1
|
0.434
|
0.434
|
9.6166
|
0.002
|
. |**
|
|
|
. | .
|
|
|
2
|
0.246
|
0.072
|
12.784
|
0.002
|
. | .
|
|
|
.*| .
|
|
|
3
|
-0.009
|
-0.173
|
12.788
|
0.005
|
. | .
|
|
|
. | .
|
|
|
4
|
-0.064
|
-0.025
|
13.009
|
0.011
|
.*| .
|
|
|
. | .
|
|
|
5
|
-0.078
|
0.000
|
13.350
|
0.020
|
. |*.
|
|
|
. |**
|
|
|
6
|
0.142
|
0.240
|
14.507
|
0.024
|
. |*.
|
|
|
. | .
|
|
|
7
|
0.123
|
-0.016
|
15.399
|
0.031
|
. |*.
|
|
|
. | .
|
|
|
8
|
0.168
|
0.036
|
17.088
|
0.029
|
. |*.
|
|
|
. |*.
|
|
|
9
|
0.195
|
0.148
|
19.437
|
0.022
|
. |*.
|
|
|
. |*.
|
|
|
10
|
0.192
|
0.090
|
21.769
|
0.016
|
. |*.
|
|
|
. |*.
|
|
|
11
|
0.165
|
0.079
|
23.538
|
0.015
|
. |*.
|
|
|
. | .
|
|
|
12
|
0.112
|
-0.024
|
24.375
|
0.018
|
.*| .
|
|
|
**| .
|
|
|
13
|
-0.156
|
-0.284
|
26.050
|
0.017
|
**| .
|
|
|
.*| .
|
|
|
14
|
-0.230
|
-0.109
|
29.793
|
0.008
|
**| .
|
|
|
.*| .
|
|
|
15
|
-0.255
|
-0.090
|
34.536
|
0.003
|
. | .
|
|
|
. |*.
|
|
|
16
|
-0.036
|
0.142
|
34.634
|
0.004
|
. | .
|
|
|
.*| .
|
|
|
17
|
-0.024
|
-0.142
|
34.680
|
0.007
|
. |*.
|
|
|
. |*.
|
|
|
18
|
0.208
|
0.130
|
38.155
|
0.004
|
. |*.
|
|
|
. | .
|
|
|
19
|
0.131
|
0.045
|
39.578
|
0.004
|
. | .
|
|
|
.*| .
|
|
|
20
|
0.019
|
-0.103
|
39.608
|
0.006
|
|
|
|
|
|
|
|
|
|
128
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Tableau 2.6 : test de causalité au sens de
Granger
Pairwise Granger Causality Tests Date: 05/10/10 Time: 11:39
Sample: 2005M01 2008M12 Lags: 1
Null Hypothesis: Obs F-Statistic Prob.
VT does not Granger Cause REND 47 0.18812 0.6666
REND does not Granger Cause VT 2.86139 0.0978
+ Tableau 2.7 : décomposition du volume de
transaction du marché et extraction de
la composante liée à l'excès de
confiance
Dependent Variable: VT
Method: Least Squares
Date: 05/11/10 Time: 13:00
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
0.042351
|
0.009081 4.663807
|
0.0000
|
REND(-1)
|
-0.009797
|
0.005347 -1.832067
|
0.0736
|
R-squared
|
0.069411
|
Mean dependent var
|
0.026802
|
Adjusted R-squared
|
0.048731
|
S.D. dependent var
|
0.022696
|
S.E. of regression
|
0.022136
|
Akaike info criterion
|
-4.741632
|
Sum squared resid
|
0.022049
|
Schwarz criterion
|
-4.662902
|
Log likelihood
|
113.4283
|
Hannan-Quinn criter.
|
-4.712005
|
F-statistic
|
3.356468
|
Durbin-Watson stat
|
2.646820
|
Prob(F-statistic)
|
0.073565
|
|
|
129
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
AR(1) de la série des rendements mensuels du
marché
Dependent Variable: REND
Method: Least Squares
Date: 05/10/10 Time: 11:14
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments Convergence achieved after 3 iterations
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.626358
|
0.149719 10.86277
|
0.0000
|
AR(1)
|
0.450498
|
0.135964 3.313366
|
0.0018
|
R-squared
|
0.196118
|
Mean dependent var
|
1.608733
|
Adjusted R-squared
|
0.178254
|
S.D. dependent var
|
0.620891
|
S.E. of regression
|
0.562839
|
Akaike info criterion
|
1.729974
|
Sum squared resid
|
14.25544
|
Schwarz criterion
|
1.808704
|
Log likelihood
|
-38.65440
|
Hannan-Quinn criter.
|
1.759601
|
F-statistic
|
10.97840
|
Durbin-Watson stat
|
2.056127
|
Prob(F-statistic)
|
0.001826
|
|
|
Inverted AR Roots
|
.45
|
|
|
130
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
AR(2) de la série des rendements mensuels du
marché
Dependent Variable: REND
Method: Least Squares
Date: 05/10/10 Time: 11:15
Sample (adjusted): 2005M03 2008M12 Included observations: 46
after adjustments Convergence achieved after 3 iterations
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.656860
|
0.168234 9.848547
|
0.0000
|
AR(1)
|
0.405941
|
0.151438 2.680568
|
0.0104
|
AR(2)
|
0.091238
|
0.153719 0.593539
|
0.5559
|
|
R-squared
|
0.201127
|
Mean dependent var
|
1.622554
|
Adjusted R-squared
|
0.163970
|
S.D. dependent var
|
0.620399
|
S.E. of regression
|
0.567260
|
Akaike info criterion
|
1.766996
|
Sum squared resid
|
13.83671
|
Schwarz criterion
|
1.886255
|
Log likelihood
|
-37.64090
|
Hannan-Quinn criter.
|
1.811671
|
F-statistic
|
5.412904
|
Durbin-Watson stat
|
1.936018
|
Prob(F-statistic)
|
0.008003
|
|
|
Inverted AR Roots
|
.57
|
-.16
|
|
131
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
MA(1) de la série de rendement
Dependent Variable: REND Method: Least Squares
Date: 05/10/10 Time: 11:16 Sample: 2005M01 2008M12 Included
observations: 48
Convergence achieved after 18 iterations
MA Backcast: 2004M12
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.607086
|
0.109575 14.66650
|
0.0000
|
MA(1)
|
0.322761
|
0.139720 2.310053
|
0.0254
|
R-squared
|
0.141194
|
Mean dependent var
|
1.604136
|
Adjusted R-squared
|
0.122524
|
S.D. dependent var
|
0.615075
|
S.E. of regression
|
0.576164
|
Akaike info criterion
|
1.775924
|
Sum squared resid
|
15.27037
|
Schwarz criterion
|
1.853890
|
Log likelihood
|
-40.62217
|
Hannan-Quinn criter.
|
1.805387
|
F-statistic
|
7.562736
|
Durbin-Watson stat
|
1.787916
|
Prob(F-statistic)
|
0.008490
|
|
|
Inverted MA Roots
|
-.32
|
|
|
132
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Date: 05/10/10 Time: 11:17 Sample: 2005M01 2008M12 Included
observations: 48
Convergence achieved after 10 iterations
MA Backcast: 2004M11
|
2004M12
|
|
|
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.618529
|
0.134977 11.99112
|
0.0000
|
MA(1)
|
0.389769
|
0.142938 2.726835
|
0.0091
|
MA(2)
|
0.305590
|
0.146623 2.084183
|
0.0429
|
|
R-squared
|
0.218067
|
Mean dependent var
|
1.604136
|
Adjusted R-squared
|
0.183314
|
S.D. dependent var
|
0.615075
|
S.E. of regression
|
0.555848
|
Akaike info criterion
|
1.723817
|
Sum squared resid
|
13.90350
|
Schwarz criterion
|
1.840767
|
Log likelihood
|
-38.37160
|
Hannan-Quinn criter.
|
1.768012
|
F-statistic
|
6.274832
|
Durbin-Watson stat
|
1.899313
|
Prob(F-statistic)
|
0.003947
|
|
|
Inverted MA Roots
|
-.19+.52i
|
-.19-.52i
|
|
133
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Date: 05/10/10 Time: 11:17 Sample: 2005M01 2008M12 Included
observations: 48
Convergence achieved after 13 iterations
MA Backcast: 2004M10
|
2004M12
|
|
|
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.638999
|
0.174563 9.389140
|
0.0000
|
MA(1)
|
0.421369
|
0.145450 2.897004
|
0.0059
|
MA(2)
|
0.513749
|
0.147268 3.488538
|
0.0011
|
MA(3)
|
0.268678
|
0.152973 1.756374
|
0.0860
|
|
R-squared
|
0.243721
|
Mean dependent var
|
1.604136
|
Adjusted R-squared
|
0.192156
|
S.D. dependent var
|
0.615075
|
S.E. of regression
|
0.552830
|
Akaike info criterion
|
1.732125
|
Sum squared resid
|
13.44735
|
Schwarz criterion
|
1.888058
|
Log likelihood
|
-37.57099
|
Hannan-Quinn criter.
|
1.791052
|
F-statistic
|
4.726523
|
Durbin-Watson stat
|
1.965434
|
Prob(F-statistic)
|
0.006057
|
|
|
Inverted MA Roots
|
.03-.74i
|
.03+.74i -.49
|
|
134
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Date: 05/10/10 Time: 11:18 Sample: 2005M01 2008M12 Included
observations: 48
Convergence achieved after 35 iterations
MA Backcast: 2004M09 2004M12
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.645445
|
0.191155 8.607900
|
0.0000
|
MA(1)
|
0.452147
|
0.153208 2.951199
|
0.0051
|
MA(2)
|
0.561550
|
0.169346 3.315986
|
0.0019
|
MA(3)
|
0.324430
|
0.171569 1.890965
|
0.0654
|
MA(4)
|
0.046320
|
0.161461 0.286881
|
0.7756
|
|
R-squared
|
0.244192
|
Mean dependent var
|
1.604136
|
Adjusted R-squared
|
0.173884
|
S.D. dependent var
|
0.615075
|
S.E. of regression
|
0.559048
|
Akaike info criterion
|
1.773169
|
Sum squared resid
|
13.43898
|
Schwarz criterion
|
1.968085
|
Log likelihood
|
-37.55604
|
Hannan-Quinn criter.
|
1.846828
|
F-statistic
|
3.473181
|
Durbin-Watson stat
|
1.999096
|
Prob(F-statistic)
|
0.015196
|
|
|
Inverted MA Roots
|
.07-.75i
|
.07+.75i -.22
|
-.38
|
135
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Tableau 2.10 : estimation du processus ARMA (p,q)
par la méthode MCO
ARMA(1,0) de la série de
rendement
Dependent Variable: REND
Method: Least Squares
Date: 05/10/10 Time: 11:14
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments Convergence achieved after 3 iterations
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.626358
|
0.149719 10.86277
|
0.0000
|
AR(1)
|
0.450498
|
0.135964 3.313366
|
0.0018
|
R-squared
|
0.196118
|
Mean dependent var
|
1.608733
|
Adjusted R-squared
|
0.178254
|
S.D. dependent var
|
0.620891
|
S.E. of regression
|
0.562839
|
Akaike info criterion
|
1.729974
|
Sum squared resid
|
14.25544
|
Schwarz criterion
|
1.808704
|
Log likelihood
|
-38.65440
|
Hannan-Quinn criter.
|
1.759601
|
F-statistic
|
10.97840
|
Durbin-Watson stat
|
2.056127
|
Prob(F-statistic)
|
0.001826
|
|
|
Inverted AR Roots
|
.45
|
|
|
136
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Sample (adjusted): 2005M02 2008M12
Included observations: 47 after adjustments
Convergence achieved after 6 iterations
MA Backcast: 2005M01
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.643209
|
0.169261 9.708140
|
0.0000
|
AR(1)
|
0.593637
|
0.263616 2.251904
|
0.0294
|
MA(1)
|
-0.185154
|
0.317686 -0.582821
|
0.5630
|
R-squared
|
0.202620
|
Mean dependent var
|
1.608733
|
Adjusted R-squared
|
0.166376
|
S.D. dependent var
|
0.620891
|
S.E. of regression
|
0.566892
|
Akaike info criterion
|
1.764407
|
Sum squared resid
|
14.14014
|
Schwarz criterion
|
1.882501
|
Log likelihood
|
-38.46356
|
Hannan-Quinn criter.
|
1.808847
|
F-statistic
|
5.590363
|
Durbin-Watson stat
|
1.951621
|
Prob(F-statistic)
|
0.006865
|
|
|
Inverted AR Roots
|
.59
|
|
|
Inverted MA Roots
|
.19
|
|
|
137
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments Convergence achieved after 30 iterations
MA Backcast: 2004M12
|
2005M01
|
|
|
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.628843
|
0.164336 9.911650
|
0.0000
|
AR(1)
|
0.221043
|
0.316911 0.697493
|
0.4892
|
MA(1)
|
0.169719
|
0.284822 0.595877
|
0.5544
|
MA(2)
|
0.413889
|
0.156674 2.641717
|
0.0115
|
|
R-squared
|
0.247255
|
Mean dependent var
|
1.608733
|
Adjusted R-squared
|
0.194738
|
S.D. dependent var
|
0.620891
|
S.E. of regression
|
0.557165
|
Akaike info criterion
|
1.749355
|
Sum squared resid
|
13.34862
|
Schwarz criterion
|
1.906814
|
Log likelihood
|
-37.10984
|
Hannan-Quinn criter.
|
1.808608
|
F-statistic
|
4.708095
|
Durbin-Watson stat
|
1.934337
|
Prob(F-statistic)
|
0.006274
|
|
|
Inverted AR Roots
|
.22
|
|
|
Inverted MA Roots
|
-.08-.64i
|
-.08+.64i
|
|
138
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments Convergence achieved after 37 iterations
MA Backcast: 2004M11
|
2005M01
|
|
|
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C
|
1.844815
|
0.141639 13.02476
|
0.0000
|
AR(1)
|
0.884596
|
0.076870 11.50771
|
0.0000
|
MA(1)
|
-0.636796
|
0.170541 -3.733981
|
0.0006
|
MA(2)
|
-0.112171
|
0.180765 -0.620537
|
0.5383
|
MA(3)
|
-0.198003
|
0.157951 -1.253572
|
0.2169
|
|
R-squared
|
0.344105
|
Mean dependent var
|
1.608733
|
Adjusted R-squared
|
0.281639
|
S.D. dependent var
|
0.620891
|
S.E. of regression
|
0.526243
|
Akaike info criterion
|
1.654182
|
Sum squared resid
|
11.63115
|
Schwarz criterion
|
1.851007
|
Log likelihood
|
-33.87328
|
Hannan-Quinn criter.
|
1.728249
|
F-statistic
|
5.508667
|
Durbin-Watson stat
|
1.985102
|
Prob(F-statistic)
|
0.001171
|
|
|
Inverted AR Roots
|
.88
|
|
|
Inverted MA Roots
|
.97
|
-.16+.42i -.16-.42i
|
|
139
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Tableau 2.11 : effet de l'excès de confiance
sur la volatilité conditionnelle des
rendements mensuels du marché (Période :
01 Janvier 2005- 31Décembre 2008)
Dependent Variable: RT
Method: ML - ARCH (Marquardt) - Generalized error distribution
(GED) Date: 05/26/10 Time: 13:50
Sample (adjusted): 2005M02 2008M11
Included observations: 46 after adjustments
Convergence achieved after 11 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
C(6) *RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1)) + C(8)*EC + C(9)*NEC
Coefficient Std. Error z-Statistic Prob.
GARCH 3.185270 0.851250 3.741872 0.0002
C 0.382515 0.024292 15.74632 0.0000
AR(1) 0.174814 0.018639 9.379135 0.0000
Variance Equation
C(4) -2.275020 0.176279 -12.90577 0.0000
C(5) -0.148661 0.058743 -2.530695 0.0114
C(6) -0.129758 0.052386 -2.476936 0.0133
C(7) -0.162290 0.024673 -6.577727 0.0000
C(8) -70.82283 3.801153 -18.63193 0.0000
C(9) 0.494269 0.196618 2.513855 0.0119
GED PARAMETER 0.261403 0.055364 4.721502 0.0000
R-squared 0.909826 Mean dependent var 1.591564
Adjusted R-squared 0.887282 S.D. dependent var 0.616368
S.E. of regression 0.206936 Akaike info criterion -0.817216
Sum squared resid 1.541617 Schwarz criterion -0.419685
Log likelihood 28.79597 Hannan-Quinn criter. -0.668299
F-statistic 40.35850 Durbin-Watson stat 1.601845
Prob(F-statistic) 0.000000
140
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
modèle avec tendance et constante « en
niveau »
Null Hypothesis: RMT has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.939672
0.0011
Test critical values: 1% level -4.165756
5% level -3.508508
10% level -3.184230
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(RMT)
Method: Least Squares
Date: 05/22/10 Time: 21:49
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
RMT(-1) C @TREND(2005M01)
|
-0.714581 0.008679 -0.000220
|
0.144662 -4.939672
0.010754 0.807034
0.000388 -0.566927
|
0.0000 0.4240 0.5736
|
R-squared
|
0.357206
|
Mean dependent var
|
-0.000322
|
Adjusted R-squared
|
0.327988
|
S.D. dependent var
|
0.043877
|
S.E. of regression
|
0.035969
|
Akaike info criterion
|
-3.750641
|
Sum squared resid
|
0.056924
|
Schwarz criterion
|
-3.632547
|
Log likelihood
|
91.14007
|
Hannan-Quinn criter.
|
-3.706201
|
F-statistic
|
12.22556
|
Durbin-Watson stat
|
1.876243
|
Prob(F-statistic)
|
0.000060
|
|
|
141
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
marché : modèle avec constante « en
niveau »
Null Hypothesis: RMT has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.949662
0.0002
Test critical values: 1% level -3.577723
5% level -2.925169
10% level -2.600658
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(RMT)
Method: Least Squares
Date: 05/22/10 Time: 21:52
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
RMT(-1)
|
-0.708900
|
0.143222 -4.949662
|
0.0000
|
C
|
0.003374
|
0.005260 0.641442
|
0.5245
|
R-squared
|
0.352510
|
Mean dependent var
|
-0.000322
|
Adjusted R-squared
|
0.338121
|
S.D. dependent var
|
0.043877
|
S.E. of regression
|
0.035696
|
Akaike info criterion
|
-3.785916
|
Sum squared resid
|
0.057340
|
Schwarz criterion
|
-3.707187
|
Log likelihood
|
90.96903
|
Hannan-Quinn criter.
|
-3.756290
|
F-statistic
|
24.49915
|
Durbin-Watson stat
|
1.871484
|
Prob(F-statistic)
|
0.000011
|
|
|
142
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
modèle sans tendance ni constante « en
niveau »
Null Hypothesis: RMT has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.940016
0.0000
Test critical values: 1% level -2.615093
5% level -1.947975
10% level -1.612408
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(RMT)
Method: Least Squares
Date: 05/22/10 Time: 21:52
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
RMT(-1)
|
-0.695860
|
0.140862 -4.940016
|
0.0000
|
R-squared
|
0.346590
|
Mean dependent var
|
-0.000322
|
Adjusted R-squared
|
0.346590
|
S.D. dependent var
|
0.043877
|
S.E. of regression
|
0.035467
|
Akaike info criterion
|
-3.819368
|
Sum squared resid
|
0.057865
|
Schwarz criterion
|
-3.780003
|
Log likelihood
|
90.75514
|
Hannan-Quinn criter.
|
-3.804555
|
Durbin-Watson stat
|
1.875073
|
|
|
143
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
modèle avec tendance et constante « en
niveau »
Null Hypothesis: CSADT has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.012242
0.0149
Test critical values: 1% level -4.165756
5% level -3.508508
10% level -3.184230
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(CSADT)
Method: Least Squares
Date: 05/22/10 Time: 21:57
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
CSADT(-1) C @TREND(2005M01)
|
-0.535679 0.023348 9.45E-05
|
0.133511 -4.012242
0.009602 2.431630
0.000301 0.314152
|
0.0002 0.0192 0.7549
|
R-squared
|
0.269695
|
Mean dependent var
|
0.000336
|
Adjusted R-squared
|
0.236499
|
S.D. dependent var
|
0.031533
|
S.E. of regression
|
0.027553
|
Akaike info criterion
|
-4.283725
|
Sum squared resid
|
0.033403
|
Schwarz criterion
|
-4.165630
|
Log likelihood
|
103.6675
|
Hannan-Quinn criter.
|
-4.239285
|
F-statistic
|
8.124395
|
Durbin-Watson stat
|
2.021166
|
Prob(F-statistic)
|
0.000993
|
|
|
144
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
modèle avec constante « en niveau
»
Null Hypothesis: CSADT has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.059579
0.0026
Test critical values: 1% level -3.577723
5% level -2.925169
10% level -2.600658
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable:
D(CSADT)
Method: Least Squares
Date: 05/22/10 Time: 21:58
Sample (adjusted): 2005M02 2008M12 Included observations: 47
after adjustments
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
CSADT(-1)
|
-0.528398
|
0.130161 -4.059579
|
0.0002
|
C
|
0.025272
|
0.007319 3.453198
|
0.0012
|
R-squared
|
0.268057
|
Mean dependent var
|
0.000336
|
Adjusted R-squared
|
0.251791
|
S.D. dependent var
|
0.031533
|
S.E. of regression
|
0.027275
|
Akaike info criterion
|
-4.324038
|
Sum squared resid
|
0.033478
|
Schwarz criterion
|
-4.245308
|
Log likelihood
|
103.6149
|
Hannan-Quinn criter.
|
-4.294411
|
F-statistic
|
16.48018
|
Durbin-Watson stat
|
2.031446
|
Prob(F-statistic)
|
0.000194
|
|
|
145
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Tableau 3.8: Ecart-type transversal absolu et
comportement grégaire
(Période : 01 Janvier 2005- 31 Décembre
2008)
Dependent Variable: CSADT Method: Least Squares
Date: 05/22/10 Time: 22:03 Sample: 2005M01 2008M12 Included
observations: 48
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.026645 0.698285 1.935946
|
0.005661 4.707131
0.413730 1.687779
4.726152 0.409624
|
0.0000 0.0984 0.6840
|
R-squared
|
0.554798
|
Mean dependent var
|
0.046920
|
Adjusted R-squared
|
0.535011
|
S.D. dependent var
|
0.030625
|
S.E. of regression
|
0.020883
|
Akaike info criterion
|
-4.839296
|
Sum squared resid
|
0.019625
|
Schwarz criterion
|
-4.722346
|
Log likelihood
|
119.1431
|
Hannan-Quinn criter.
|
-4.795100
|
F-statistic
|
28.03887
|
Durbin-Watson stat
|
1.468483
|
Prob(F-statistic)
|
0.000000
|
|
|
146
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
+ Tableau 3.9: Estimation du comportement
grégaire dans les marchés boursiers
tunisien haussier et baissier
Le marché boursier tunisien haussier
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 09:24
Sample: 1 28
Included observations: 28
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.028329 1.082235 -8.003066
|
0.006605 4.289302
0.526320 2.056231
6.358469 -1.258647
|
0.0002 0.0503 0.2198
|
R-squared
|
0.378326
|
Mean dependent var
|
0.045965
|
Adjusted R-squared
|
0.328593
|
S.D. dependent var
|
0.018985
|
S.E. of regression
|
0.015557
|
Akaike info criterion
|
-5.387715
|
Sum squared resid
|
0.006050
|
Schwarz criterion
|
-5.244979
|
Log likelihood
|
78.42801
|
Hannan-Quinn criter.
|
-5.344079
|
F-statistic
|
7.607017
|
Durbin-Watson stat
|
1.312408
|
Prob(F-statistic)
|
0.002627
|
|
|
147
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Le marché boursier tunisien baissier
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 09:26
Sample: 1 20
Included observations: 20
CSADT=C(1)+C(2)* ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.016722 1.165808 1.915700
|
0.007272 2.299479
0.508576 2.292300
5.496555 0.348527
|
0.0344 0.0349 0.7317
|
R-squared
|
0.810549
|
Mean dependent var
|
0.048258
|
Adjusted R-squared
|
0.788261
|
S.D. dependent var
|
0.042480
|
S.E. of regression
|
0.019547
|
Akaike info criterion
|
-4.894476
|
Sum squared resid
|
0.006496
|
Schwarz criterion
|
-4.745116
|
Log likelihood
|
51.94476
|
Hannan-Quinn criter.
|
-4.865320
|
F-statistic
|
36.36660
|
Durbin-Watson stat
|
1.665378
|
Prob(F-statistic)
|
0.000001
|
|
|
+ Tableau 3.10: Estimation du comportement
grégaire durant les périodes de fort et
faible volume de transactions sur le marché
boursier tunisien
Fort volume de transactions sur le marché boursier
tunisien
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 09:35
Sample (adjusted): 1 22
Included observations: 22 after adjustments
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.028042 0.554958 4.390150
|
0.011127 2.520083
0.701298 0.791330
7.438069 0.590227
|
0.0208 0.4385 0.5620
|
R-squared
|
0.585401
|
Mean dependent var
|
0.054959
|
Adjusted R-squared
|
0.541759
|
S.D. dependent var
|
0.038630
|
S.E. of regression
|
0.026150
|
Akaike info criterion
|
-4.323832
|
Sum squared resid
|
0.012992
|
Schwarz criterion
|
-4.175054
|
Log likelihood
|
50.56216
|
Hannan-Quinn criter.
|
-4.288785
|
F-statistic
|
13.41370
|
Durbin-Watson stat
|
2.214351
|
Prob(F-statistic)
|
0.000233
|
|
|
148
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Faible volume de transactions sur le marché
boursier tunisien
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 09:38
Sample: 1 25
Included observations: 25
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.020427 1.617475 -13.94165
|
0.005896 3.464440
0.531712 3.042015
7.192320 -1.938407
|
0.0022 0.0060 0.0655
|
R-squared
|
0.508932
|
Mean dependent var
|
0.040990
|
Adjusted R-squared
|
0.464289
|
S.D. dependent var
|
0.020025
|
S.E. of regression
|
0.014657
|
Akaike info criterion
|
-5.495696
|
Sum squared resid
|
0.004726
|
Schwarz criterion
|
-5.349431
|
Log likelihood
|
71.69620
|
Hannan-Quinn criter.
|
-5.455128
|
F-statistic
|
11.40015
|
Durbin-Watson stat
|
1.614857
|
Prob(F-statistic)
|
0.000400
|
|
|
+ Tableau 3.11: Estimation du comportement
grégaire durant les périodes de forte
et faible volatilité sur le marché
boursier tunisien
Forte volatilité sur le marché boursier
tunisien
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 12:29
Sample: 1 14
Included observations: 14
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.136819 -2.992282 29.78506
|
0.090425 1.513067
2.855325 -1.047965
21.20297 1.404759
|
0.1585 0.3171 0.1877
|
R-squared
|
0.399241
|
Mean dependent var
|
0.076183
|
Adjusted R-squared
|
0.290012
|
S.D. dependent var
|
0.034976
|
S.E. of regression
|
0.029471
|
Akaike info criterion
|
-4.023386
|
Sum squared resid
|
0.009554
|
Schwarz criterion
|
-3.886445
|
Log likelihood
|
31.16370
|
Hannan-Quinn criter.
|
-4.036063
|
F-statistic
|
3.655083
|
Durbin-Watson stat
|
1.919359
|
Prob(F-statistic)
|
0.060653
|
|
|
149
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à travers
l'excès de confiance et le comportement grégaire. «
Validation empirique sur la BVMT »
Faible volatilité sur le marché boursier
tunisien
Dependent Variable: CSADT
Method: Least Squares
Date: 05/24/10 Time: 12:25
Sample: 1 34
Included observations: 34
CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2
Variable
|
Coefficient
|
Std. Error t-Statistic
|
Prob.
|
C(1)
C(2)
C(3)
|
0.026610 -0.194768 69.53997
|
0.007279 3.655846
1.244769 -0.156469
44.83511 1.551016
|
0.0009 0.8767 0.1310
|
R-squared
|
0.390156
|
Mean dependent var
|
0.034871
|
Adjusted R-squared
|
0.350811
|
S.D. dependent var
|
0.018465
|
S.E. of regression
|
0.014878
|
Akaike info criterion
|
-5.493817
|
Sum squared resid
|
0.006862
|
Schwarz criterion
|
-5.359138
|
Log likelihood
|
96.39489
|
Hannan-Quinn criter.
|
-5.447887
|
F-statistic
|
9.916345
|
Durbin-Watson stat
|
1.959261
|
Prob(F-statistic)
|
0.000469
|
|
|
150
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
Références
bibliographiques
151
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à travers
l'excès de confiance et le comportement grégaire. «
Validation empirique sur la BVMT »
Références bibliographiques
1. Acker, D., and NW. Duck, 2008, «Cross-cultural
overconfidence and biased self-attribution», The Journal of
Socio-Economics, 37, pp 1815-1824.
2. Acta Psychological, 47(2), pp143-148.
3. Admiti, A., and P. Pfeiderer, 1997, «Does It All Add Up?
Benchmarks and the Compensation of Active Portflolio Managers», Journal of
Business, 70, pp323-350.
4. Aftalion, F., 2005, « Le MEDAF et la Finance
Comportementale», Revue Française de Gestion, 31, pp203-214.
5. Akhter, S., and MA. Misir , 2005, «Capital Markets
Efficiency: Evidence from the Emerging Capital Market with Particular Reference
to Dhaka Stock Exchange», South Asian Journal of Management, 12(3),
pp35-51.
6. Albouy, M., et G. Charreaux, «La finance
comportementale ou l'émergence d'un nouveau paradigme dominant?»,
Revue Française de Gestion, 2005/4, No157, pp139-143.
7. Alpert, M., and H. Raiffa, 1982, « A progress Report
on the Training of probability Assessors» in Judgment Under Uncertainty:
Heuristics and Biases, ed D. Kahneman, P. Slovic, and A. Tversky, Cambridge
university press, pp 294-305.
8. Asch, S., 1952, Social Psychology, Englewood Cliffs, New
Jersey, Prentice-Hall.
9. Avramov, D., T. Chordia, and A. Goyal, 2006, «Liquidity
and autocorrelations in individual stock returns», Journal of Finance,
61(5), pp2365-2394.
10. Baker, HK., and JR. Nofsinger, 2002, «Psychological
Biases of Investors», Financial Services Review, 11(2), pp97-116.
11. Banerjee, A.V., 1992, «A simple model of Herd
behavior», The Quarterly Journal of Economics, 107(3), pp 797-817.
152
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
12. Banz, RW., 1981, « The relationship between return and
market value of common stocks», Journal of Financial Economics, 9(1),
pp3-18.
13. Barber, BM., and T. Odean, 2000, «Trading is
hazardous to your wealth: The common stock investment performance of individual
investors», Journal of Finance, 55(2), pp773-806.
14. Barber, BM., and T. Odean, 2001, «Boyswill be boys:
Gender, Overconfidence and Common Stock Investment», Quarterly Journal of
Economics, 116(1), pp261-292.
15. Barberis, N., A. Schleifer, and R. Vishny, 1998, «A
model of investor sentiment», Journal of Financial Economics, 49, pp
307-343.
16. Barberis, N., and R. Thaler, 2002, «A survey of
Behavioral Finance», Hand Book of the Economics of Finance. Elsevier
Science B.V. 1052-1121.
17. Barberis, N., M. Huang, and T. Santos, 2001, «Prospect
theory and Asset prices», The Quarterly Journal of Economics, 116(1),
pp1-53.
18. Barberis,N., and R. Thaler, 2002, « A Survey of
Behavioral Finance», Working Paper.
19. Basu, S, 1977, «Investment performance of common
Stocks in relation to their price-earnings ratios: A test of the Efficient
Market Hypothesis», The Journal of Finance, 32(3), pp 663-682.
20. Baumann, AO., RB.Deber, and GG.Thompson, 1991,
«Overconfidence among Physicians and Nurses: The Micro-Certainty,
Macro-Uncertainty Phenomenon», Social Science et Medicine, 32,
pp167-174.
21. Becker, G.S., 1991, «A Note on Restaurant Pricing and
Other Examples of Social Influence on Prices», Journal of Political
Economy, 99 (5), pp1109-1116.
22. Benos, A.V., 1996, «Overconfidence speculators in call
markets: Trade pattern and survival», Working Paper, HEC school of
management.
23. Benos, A.V., 1998, «Aggressiveness and survival of
overconfident traders», Journal of Financial Markets, 1 (3-4),
pp353-383.
24. Bikhchandani, S., and S. Sharma, 2000, «Herd Behavior
in Financial Markets», IMF Staff Papers, 47(3), pp 279-310.
153
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
25. Bikhchandani, S., D. Hirshleifer and I. Welch, 1998,
«Learning from the Behavior of Others: Conformity, Fads, and Informational
Cascades», Journal of Economic Perspectives, 12(3), pp151-170.
26. Bikhchandani, S., D. Hirshleifer, and I. Welch, 1992,
«A Theory of Fads, Fashion, Custom, and Cultural Change as Informational
Cascades», Journal of Political Economy, 100(5), pp992-1026.
27. Black, F., 1986, «Noise», Journal of Finance,
41(3), pp529-543.
28. Boubaker, A., 2004, « Tests de l'efficience
informationnelle sur le marché boursier tunisien», Annales
d'Economie et de Gestion, 7(14), pp83-117.
29. Bourbonnais, R., 2000, «Econométrie-Manuel et
Exercices Corrigés», 3ème édition, DUNOD, pp
1-314.
30. Box, G. and M. Jenkins, 1976, «Time Series Analysis:
Forecasting and Control», Holden-Day, revised edition.
31. Brenan, M., 1993, «Agency and Asset Prices»,
Finance Working Paper N°. 6-93, UCLA.
32. Bulkey, G., and I. Tonks, 1992, «Trading Rules and
Excess Volatility», Journal of Financial and Quantitative Analysis, 27(3),
pp365-382.
33. Busse, JA ., and TC. Green, 2002, «Market Efficiency in
Real-Time», Journal of Financial Economics, 65, pp415-437.
34. Cajueiro, DO., and B.M. Tabak, 2009, «Multifractality
and herding behavior in the Japanese stock market», Chaos, Solitons and
Fractals, 40(1), pp 497-504.
35. Calvo, G., and E. Mendoza, 1998, «Rational herd
behavior and globalization of securities markets», Mimeo, University of
Maryland.
36. Campbell, J.Y and R.J. Shiller, 1987, «Co-integration
and tests of present value models», Journal of Political Economy, 95,
pp1062-1088.
37. Chan, WS., RM. Frankel, and SP. Kothari, 2003,
«Testing Behavioral Finance Theories Using Trends and Sequences in
Financial Performance», Social Science Research Network.
154
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
38. Chang, EC., JW. Cheng, and A. Khorana, 2000, «An
examination of herd behavior in equity markets: An international
perspective», Journal of Banking and Finance, 24(10), pp 1651-1679.
39. Chari, V.V., and P.J. Kehoe, 2002, «On the Robustness
of Herds», Working Paper 622, Federal Reserve Bank of Minneapolis.
40. Chen, G., KA. Kim, JR. Nofsinger, and OM. Rui,
2007,«Trading Performance, Disposition Effect, Overconfidence,
Representativeness Bias, and Experience of Emerging Market Investors»,
Journal of behavioral decision making, 20(4),p.425.
41. Chen, G., M. Firth, and O. Riu, 2001, «The Dynamic
Relation Between Stock Returns, Trading Volume, and Volatility», Financial
Review, 38, 153-174.
42. Chen, J., 2003, «An Entropy Theory of Psychology and
its Implication to Behavioral Finance «, Social Science Research Network
Electronic Paper Collection.
43. Chirstensen-Szalanski, Jay J., and JB. Bushyhead, 1981,
«Physician's use of probabilistic information in a real clinical
setting», Journal of Experimental Psychology: Human Perception and
Performance, 7(4), pp928-935.
44. Choe, H., B. Kho, and R. Stulz, 1999, «Do foreign
investors destabilize stock markets? The Korean experience in 1997»,
Journal of Financial Economics, 54(2), pp227-264.
45. Christie, WG., and RD .Huang, 1995, «Following the Pied
Piper: Do Individual Returns Herd around the Market?», Financial Analysts
Journal, 51(4), pp31-37.
46. Chuang, W-I., and B-S. Lee, 2006, «An empirical
evaluation of the overconfidence hypothesis», Journal of Banking and
Finance, 30(9), pp 2489-2515.
47. Clement, MB., and SY. Tse, 2005, «Financial Analyst
Characteristics and Herding Behavior in Forecasting», Journal of Finance,
60(1), pp307-341.
48. Cooper, A.C., C.Y. Woo and W.C. Dunkelberg, 1988,
«Entrepreneur's perceived chances for success», Journal of Business
Venturing, 3, pp97-108.
49. Cote,I., and D.Sanders, 1997, « Herding Behavior:
Explanations and Implications», Behavioral Research in Accounting, 9(1),
pp20-45.
155
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
50. Coval, JD., and T. Shumway, 2005, «Do Behavioral Biases
Affect Prices?», Journal of Finance, 60(1), pp1-34.
51. Coval, JD., and TJ. Moskowitz, 1999, «Home Bias at
Home: Local Equity Preference in Domestic Portfolios», Journal of Finance,
54(6), pp2045-2073.
52. Coval, JD., and TJ. Moskowitz, 2001, «The Geography of
Investment: Informed Trading and Asset Prices», Journal of Political
Economy, 109(4), pp 811-841.
53. Cowles, A., 1960, «A Revision of Previous Conclusions
Regarding Stock Price Behavior», Economtrica, 28(4), pp909-915.
54. Cowles, A., and H. Jones, 1937, «Some a posteriori
probabilities in stock market action», Econometrica, 5, pp280-294.
55. Cuthberston, K., and S. Hyde, 2002, « Excess volatility
and efficiency in French and German stock markets», Economic Modelling,
19, pp 399-418.
56. Daniel, K., D. Hirshleifer, and A. Subrahmanyam, 1997,
«A Theory of Overconfidence, Self-Attribution, and Security Market
Under-and Over reactions», Working Paper.
57. Daniel, K., D. Hirshleifer, and A. Subrahmanyam, 1998,
«Investor psychology and security market under- and over reactions»,
Journal of Finance, 53 (6), pp1839- 1885.
58. Daniel, K., D. Hirshleifer, and SH. Teoh, 2002,
«Investor psychology in capital markets: Evidence and policy
implications», Journal of Monetary Economics, 49, pp139-209.
59. Darrat, AF., M.Zhong, and L.Cheng, 2007, « Testing
the Implications of Overconfidence for Intraday Trading», Journal of
Banking and Finance, 31(9), pp2711-2729.
60. De Bondt, W.F ., 1993, «Betting on trends. Intuitive
forecasts of financial risk and return», International Journal of
Forecasting, 9(3), pp355-371.
61. De Bondt, W.F., and R. Thaler, 1985, « Does the Stock
Market Overreact?», Journal of Finance, 40(3), pp793-808.
156
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
62. De Long, J.B., and M. Becht , 1992, « Excess volatility
and the German stock market», NBER Working Paper.
63. De Long, JB., A. Shleifer, LH. Summers, and RJ. Waldmann,
1990, «Noise Trader Risk in Financial Markets», Journal of Political
Economy, 98(4), pp703-738.
64. Debondt, W.F., and R. Thaler., 1995, « Financial
decision making in markets and firms: A behavioural perspective», in R.A.
Jarrow, V. Maksimovic, and W.T. Ziemba, (eds.): Handbooks in Operations
Research and Management Science, Finance, 9, pp383-410.
65. Demirer, R.J., D. Gubo, and A.M. Kutan, 2007, «An
Analysis of Cross -Country Herd Behavior in Stock Markets: A Regional
Perspective», Working Paper, London.
66. Demirer,R., A.M. Kutan, 2006, « Does Herding
Behavior exist in Chinese Stock Markets?», Journal of International
Financial Markets, Institutions and Money, 16(2), pp123-142.
67. Devenow, A., and I. Welch, 1996, «Rational Herding in
Financial Economics», European Economic Review, 40(3-5), pp 603-615.
68. Dickey, D.A., and W.A. Fuller, 1981, Likelihood Ratio
Statistics for Autoregressive Time Series with a Unit Root, Econometrica 49,
1057-1072.
69. Dumas, B., 2003, «Why the excess volatility?»,
Europlace Institute Conference.
70. Dunbar, FC., and D. Heller, 2006,« Fraud on The Market
Meets Behavioral Finance», Delaware Journal of Corporate Law, 31(2),
p.455.
71. Editorial Viewpoint, 1988, «October'87 and the
Efficient Market», Financial Analysts Journal, 44(1), pp6-7.
72. Editorial, 2004, «Introduction to the special issue on
behavioral finance», Journal of Empirical Finance, 11, pp 423-427.
73. Eichengreen, B.J., D.J. Mathieson., B. Chadha., A.
Jansen., L. Kodes., and S. Sharma., 1998, «Hedge Funds and Financial
Market dynamics», Occasional Paper, N° 166, International Monetary
Fund.
157
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
74. Fama, EF., 1963, «Mandelbrot and the Stable Paretian
Hypothesis», Journal of Business, 36(4), pp420-429.
75. Fama, EF., 1965a, «Random Walks in Stock Market
Prices», Financial Analysts Journal, 21, pp55-59.
76. Fama, EF., 1965b, « The Behavior of Stock Market
Prices», Journal of Business, 38(1), pp34-105.
77. Fama, EF., 1970, «Efficient Capital Markets: A Review
of Theory and Empirical Work», Journal of Finance, 25(2), pp 383-417.
78. Fama, EF., 1991, «Efficient Capital Markets II»,
Journal of Finance, 46(5), pp 1575- 1617.
79. Fama, EF., 1998, «Market efficiency, long-term returns,
and behavioral finance», Journal of Financial Economics, 49, pp
283-306.
80. Fama, EF., and KR. French, 1996, «Multifactor
Explanations of Asset Pricing Anomalies», Journal of Finance, 51(1),
pp55-84.
81. Fama, EF., and ME. Blume, 1966, «Filter Rules and
Stock-Market Trading», Journal of Business, 39(1), pp226-241.
82. Fama, EF., and RF. French, 1992, « The Cross -Section
of Expected Stock Returns», Journal of Finance, 47(2), pp427-465.
83. Fernandes, JLB., and JRH. Ornelas, 2005, «Momentum and
Reversal Puzzle in Emerging Markets», Social Science Research Network.
84. Flavin, MA., 1983, «Excess Volatility in the Financial
Markets: A Reassessment of the Empirical Evidence», Journal of Political
Economy, 91(6), pp929-956.
85. French, KR., and R. Roll, 1986, «Stock Return
Variances: The Arrival of Information and the Reaction of Traders»,
Journal of Financial Economics, 17(1), pp5-26.
86. Frieder, L., «Evidence on Behavioral Biases in Trading
Activity», The Anderson School, Working Paper.
87. Friedman, M., 1953, «The case of Flexible Exchange
Rates», in Milton Friedman (ed.), Essays in Positive Economics, University
of Chicago Press, Chicago; IL.
158
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
88. Froot, K., and E. Dabora, 1999, «How are stock prices
affected by the location of trade?», Journal of Financial Economics,
53(2), pp189-216.
89. Froot, K.A., D.S. Scharfstein and J.C. Stein, 1992,
«Herd on the street; Informational Inefficiencies in a market with
short-term speculation», Journal of Finance, 47, pp1461-1484.
90. Gervais, S., and T. Odean, 2001, «Learning to Be
Overconfident», Review of Financial Studies, 14(1), pp1-27.
91. Glaser, M., and M. Weber, 2007, «Overconfidence and
trading volume», Geneve Risk and Insurance Review, 32, pp1-36.
92. Glaser, M., and M. Weber, 2009, «Which past returns
affect trading volume?», Journal of Financial Markets, 12, pp1-31.
93. Gleason, KC., I. Mathur, and MA. Peterson, 2004,
«Analysis of intraday herding behavior among the sector ETFs»,
Journal of Empirical Finance, 11, pp 681-694.
94. Graham, J.R, 1999, «Herding among Investment
Newsletters: Theory and Evidence», journal of Finance, 54, pp237-268.
95. Granger, C., 1969, «Investigating Causal Relationship
between Econometric Methods and Cross-Spectral Methods», Econometrica, 37,
424-439.
96. Griffin, D., and A. Tversky, 1992, «The Weighing of
Evidence and The Determinants of Confidence», Cognitive Psychology, 24,
pp411-435.
97. Grossman, SJ., and RJ. Shiller, 1981, «The Determinants
of the Variability of Stock Market Prices», American Economic Review,
71(2), pp222-227.
98. Harris, M., and A. Raviv, 1993, «Differences of Opinion
Make a Horse Race», Review of financial Studies, 6, pp 222-227.
99. Hetherington, A., 2006, «Betting Against Efficiency:
Behavioral Finance in an NFL Gambling Exchange», Yale University, Social
Science Research Network.
100. Hibbert, AM., RT. Daigler, and B. Dupoyet, 2008, «A
behavioral explanation for the negative asymmetric return-volatility
relation», Journal of Banking and Finance, 32(10), pp 2254-2266.
159
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
101. Hiraki, T., and A. Ito, 2009, «Investor biases in
Japan: Another pathology of Keiretsu», Pacific- Basin Finance Journal, 17,
pp 100-124.
102. Hirshleifer, D., 2001, «Investor Psychology and Asset
Pricing» Journal of Finance, 56(4), pp1533-1598.
103. Hirshleifer, D., 2007, «Psychological Bias as a driver
of Financial Regulation», Social Science Research Network.
104. Hirshleifer, D., and G.Y.Luo, «On the Survival of
Overconfident Traders in a Competitive Securities Market», Working
Paper.
105. Hong, H., T. Lim, and J. Stein, 2000, «Bad News
travels slowly, Size, Analyst Coverage, and the Profitability of Momentum
Strategies», Journal of Finance, 55, pp265-295.
106. Huberman, G., 2001, «Familiarity Breeds
Investment», Review of Financial Studies, 14(3), pp659-680.
107. Hwang, S., and M. Salmon, 2001, «A New measure of
Herding and Empirical Evidence».
108. Hwang, S., and M. salmon, 2004, «Market stress and
herding», Journal of Empirical Finance, 11, pp 585-616.
109. Jensen. MC., 1978, «Some Anomalous Evidence Regarding
Market Efficiency», Journal of Financial Economics, 6(2/3), pp95-101.
110. John von Neumann and Oskar Morgenstern: Theory of Games and
Economic Behavior, Princeton University Press (1944).
111. Jondeau, E., 2001, « Le comportement mimétique
sur les marchés de capitaux », Bulletin de la banque de France, No
95, pp85-95.
112. Kahneman, D., and A. Tversky, 1974, «Judgment under
Uncertainty: Heuristics and Biases», Science, 185, pp1124-1131.
113. Kahneman, D., and A. tversky, 1979, «Prospect Theory:
An Analysis of Decision Under Risk», Econometrica, 47(2), pp263-291.
114. Kahneman, D., and A. Tversky, 1982, «Intuitive
Predictions: Biases and Corrective Procedures».
160
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
115. Kandel, E., and ND. Pearson, 1995, «Differential
Interpretation of Public Signals and Trade in Speculative Markets»,
Journal of Political Economy, 103(4), pp831- 872.
116. Kang, J-K., and RM. Stulz, 1997, «Why is there a home
bias? An analysis of foreign portfolio equity ownership in Japan», Journal
of Financial Economics, 46, pp3-28.
117. Karpoff, JM., 1987, «The relation between price
changes and trading volume: A survey», Journal of Financial and
Quantitative Analysis, 22, pp109-126.
118. Keynes, J.M., 1936, «The General Theory of Employment,
Interest and Money», Macmillan Cambridge University Press, for Royal
Economic Society.
119. Kidd, JB., 1970, «The utilization of subjective
probabilities in production planning», Acta Psychological, 34,
pp338-347.
120. Kim, KA .,and JR. Nofsinger, 2008, «Behavioral finance
in Asia», Pacific-Basin Finance Journal, 16, pp 1-7.
121. Kirchler,E., and B. Maciejovsky, 2002, «
Simultaneous over and under confidence: Evidence from Experimental Asset
Markets», journal of risk and uncertainty, 25 (1), pp65-85.
122. Kleidon, A., 1986, «Variance bounds tests and stock
price valuation models», Journal of Political Economy, 94, pp443-477.
123. Ko, K.J., and Z. Huang, 2007, « Arrogance can be a
virtue: Overconfidence, information acquisition, and market efficiency»,
Journal of Financial Economics, 84, pp529-560.
124. Kyle, AS., and FA. Wang, 1997, «Speculation duoply
with agreement to disagree: Can overconfidence survive the market test?»,
Journal of Finance, 52, pp2073-2090.
125. Lakonishok, J., A. Shleifer, and R. Vishny, 1992, «The
impact of institutional trading on stock prices», Journal of Financial
Economics, 32(1), pp23-44.
126. Lakonishok, J., A. Shleifer, and R. Vishny, 1994,
«Contrarian investment, extrapolation, and risk», Journal of Finance,
48(5), pp1541-1578.
127. Lamoureux, CG., and WD. Lastrapes, 1990,
«Heteroskedasticity in stock return data: Volume versus GARCH
effects», Journal of Finance, 45, pp221-229.
161
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
128. Langer, E.J., 1975, «The illusion of control»,
Journal of Personality and Social Psychology, 32(2), pp311-328.
129. Langer,E.J and J. Roth, 1975, «Heads I win, tails
it's chance: The illusion of control as function of the sequence of outcomes in
a purely chance task», Journal of Personality and Social Psychology,
32(6), pp951-955.
130. Leroy, S., and R. Porter, 1981, «The present value
reaction: Tests based on Variance Bounds», Econometrica, 49, pp555-574.
131. Lintner, J., 1965, «The valuation of risk assets
and the selection of risky investments in stock portfolios and capital
budgets», The Review of Economics and Statistics, 47(1), pp13-37.
132. Lo, AW., « Efficient Markets Hypothesis»,
Working Paper.
133. Lo, AW., 1991,«Long-Term Memory in Stock Market
Prices», Econometrica, 59(5), pp1279-1313.
134. Lo, AW., 2004, «The Adaptive Markets Hypothesis:
Market Efficiency From an Evolutionary Perspective», Working Paper.
135. Lo, AW., and AC. Mac Kinlay, 1988, « Stock Market
Prices Do Not Follow Random Walks: Evidence from a Simple Specification
Test», The Review of Financial Studies, 1(1), pp41-66.
136. Lucas, RE., 1978, « Asset Prices in An Exchange
Economy », Econometrica, 46(6), pp1429-1445.
137. Lux, T., 1995, «Herd Behavior, Bubbles and
Crashes», The Economic Journal, 105 (431), pp 881-896.
138. Mahajan, J., 1992, «The Overconfidence effect in
Marketing Management Predictions», Journal of Marketing Research, 29,
pp329-342.
139. Mangot, M., Paris 2004, « Les Comportements en bourse,
6 erreurs psychologiques qui coûtent cher », Galino
éditeur.
140. Mankiew, N.G., D. Romer, and M.D. Shapiro, 1985, « An
unbiased Reexamination of Stock Market Volatility », Journal of Finance,
40, pp677-687.
162
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
141. Marimon, R., 1993, «Expectationally Driven Market
Volatility: An Experimental Study», Journal of Economic Theory, 61(1),
pp74-103.
142. Markowitz, H., 1952, «Portfolio Selection»,
Journal of Finance», 7(1), pp77-91.
143. Marsh, T., and R. Merton, 1986, «Dividend
variability and variance bounds tests for the rationality of stock market
prices», American Economic Review, 76, pp483- 498.
144. Marshall, BR., «How Quickly is Temporary Market
Inefficiency Removed? », Massey University, Social Science Research
Network.
145. Maug, E., and N. Naik, 1996, «Herding and Delegated
Portfolio Management»', London Business School mimeo.
146. Mehra, R., and E.C. Prescott, 1985, «The Equity
Premium: A Puzzle», Journal of Monetary Economics, 15(2), pp 145-161.
147. Mignon, V., 1998, « Marchés financiers et
Modélisation des rentabilités boursières»,
Economica.
148. Morris, S., and H.S. shin, 1999, «Risk management with
interdependent choice», Oxford Review of Economic policy, 15(3),
pp653-686.
149. Mossin, J., 1966, «Equilibrium in a Capital Asset
Market», Econometrica, 34(4), pp768-783.
150. Muth, JF., 1961, «Rational Expectations and the Theory
of Price Movements», Econometrica, 29(3), pp315-335.
151. Naughton, T., 2002, «The winner is behavioral
finance? , Journal of Financial Services Marketing, 7(2), pp110-112.
152. Neale, M.A., and M.H. Bazerman, 1991, «Cognition and
Rationality in negotiation», New York: The Free Press.
153. Nelson, D.B., 1991, «Conditional Heteroskedasticity in
Asset Returns: A New Approach», Econometrica, 59(2), pp347-370.
154. Nofsinger, J., and R. Sias, 1999, «Herding and Feed
back Trading by Institutional and Individual Investors», Journal of
Finance, 54(6), pp2263-2295.
163
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
155. Odean, T., 1996, «Volume, Volatility, Price and Profit
when all Traders are above Average», Working Paper series #266, University
of California at Berkeley.
156. Odean, T., 1998a, «Volume, Volatility, Price, and
Profit When All Traders Are Above Average», Journal of Finance, 53(6),
pp1887-1934.
157. Odean, T., 1998b, «Are Investors Reluctant to Realize
their Losses?» , Journal of Finance, 53, pp 1775-1798.
158. Odean, T., 1999, «Do Investors Trade Too Much?»,
American Economic Review, 89(5), pp1279-1298.
159. Oehler, A., and G. Chao, 2002, «Institutional Herding
in Bond Markets», Unpublished Working Paper, Bamberg University,
Germany.
160. Olsen, RA., 1998, «Behavioral Finance and Its
Implications for Stock-Price Volatility», Financial Analysts Journal,
54(2), pp10-18.
161. Orléan, A., 1995, «Bayesian interactions and
collective dynamics of opinion: herd behavior and mimetic contagion»,
Journal of Economic Behavior and Organization, 28(2), pp257-274.
162. Oskamp, S., 1965, «Overconfidence in case-study
judgments», Journal of Consulting Psychology, 29(3), pp261-265.
163. Park, A., and H. Sabourian, 2006, «Herd Behavior in
Efficient Financial Markets», Working Paper tepica-249, University of
Toronto.
164. Persaud, A., 2000, «Sending the Herd off the Cliff
Edge: The Disturbing Interaction Between Herding and Market-Sensitive Risk
Management Practices», in Jacques de Larosière Essays on Global
Finance, Washington.
165. Petty, RE, F. Gleicher and SM. Baker, 1991,
«Multiple Roles for Affect in Persuasion, Emotion and Social Judgments
«, Oxford: Pregamon Press, pp181-200.
166. Presson, PK., and VA. Benassi, 1996, «Illusion of
Control: A meta-analytic review», Journal of Social Behavior and
Personality, 11(3), pp493-510.
167. Reinganum, JF., 1981, « Market Structure and the
diffusion of New technology», The Bell Journal of Economics.
164
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
168. Ricciardi, V., 2005, «A Research Starting Point for
the New Scholar: A Unique Perspective of Behavioral Finance», Social
Science Research Network.
169. Ricciardi, V., and HK. Simon, 2000, «What is
Behavioral Finance?», Business, Education and Technology Journal, 2(1),
pp26-34.
170. Ritter, JR., 2003, «Behavioral Finance»,
Pacific-Basin Finance Journal, 11, pp 429- 437.
171. Roll, R., 1992, «A Mean/Variance Analysis of tracking
error», Journal of Portfolio Management, pp13-22.
172. Russo, J.E., and P.J.H. Schoemaker, 1992, «Managing
overconfidence», Sloan Management Review, 33, pp7-17.
173. Samuelson, P., 1965, «Proof That Properly Anticipated
Prices Fluctuate Randomly», Industrial Management Review, 6(2),
pp41-49.
174. Saunders, EM ., 1993, «Stock Prices and Wall Street
Weather», American Economic Review, 83(5), pp1337-1345.
175. Scharfstein, D.S., and J.C. Stein, 1990, «Herd
Behavior and Investment«, American Economic Review, 80(3), pp465-479.
176. Scheinkman, J., and W. Xiong, 2003, «Overconfidence
and Speculative bubbles», Journal of Political Economy, 111(6), p.1183.
177. Schwert, G.W., 1990, «Stock Volatility and The Crash
of `87», The Review of Financial Studies, 3(1), pp 77-102.
178. Schwert, GW, 1989, «Why does stock market volatility
change overtime?», Journal of Finance, 44, pp1115-1153
179. Sharpe, WF., 1964, «Capital Asset Prices: A theory of
market equilibrium under conditions of risk», Journal of Finance, 19(3),
pp425-442.
180. Shefrin, H., 2000, «Beyond Greed and Fear:
Understanding Behavioral Finance and the Psychology of Investing», Boston
MA: Harvard Business School Press.
181. Shefrin, H., 2002, «Beyond Greed and Fear:
Understanding Behavioral Finance and the Psychology of Investing», Oxford
University Press.
165
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
182. Shefrin, H., 2005, «A Behavioral Approach to Asset
Pricing» Elsevier Academic Press.
183. Shefrin, H., and M. Statman, 1985, «the disposition to
sell winners too early and ride losers too long: Theory and Evidence, Journal
of Finance, 40(3), pp777-790.
184. Shiller, RJ., 1981, «Do Stock Prices Move Too Much to
be Justified by Subsequent Changes in Dividends?», American Economic
Review, 71(3), pp421-436.
185. Shiller, RJ., 1989, « Market Volatility»,
Cambridge: MIT press.
186. Shiller, RJ., 1990, «Investor behavior in the October
1987 stock market crash», American Economic Review, 80, pp465-479.
187. Shiller, RJ., 1990, «Market Volatility and Investor
Behavior», The American Economic Review, 80(2), pp58-62.
188. Shiller, RJ., 1999, «Human Behavior and the
Efficiency of the Financial System», in Handbook of Macroeconomics, J.
Taylor and M. Woodford( eds.), Amsterdam: Elsevier Science, pp 1305-1340.
189. Shiller, RJ., 2000, «Measuring Bubble Expectations and
Investor Confidence», Journal of Psychology and Financial Markets, 1(1),
pp49-60.
190. Shiller, RJ., 2002, «From Efficient Market Theory to
Behavioral Finance», Cowles Foundation Discussion Paper No 1385.
191. Shleifer, A., 2000, «Inefficient Markets: An
Introduction to Behavioral Finance», Oxford University Press.
192. Shleifer, A., and RW. Vishny, 1997, «The Limits of
Arbitrage», Journal of Finance, 52(1), pp35-55.
193. Shleifer,A., and LH. Summes (1990), «The noise trader
Approach to Finance», Journal of Economic Perspectives, 4(2), pp19-33.
194. Spieser, P., 2000, «information économique et
marchés financiers «, Gestion, Politique générale,
finance et marketing, Paris, Economica.
195. Staël Von Holstein and S. Carl-Axel, 1972,
«Probabilistic forecasting: An experiment related to the stock
market», Organizational Behavior and Human Performance, 8(1),
pp139-158.
166
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
196. Statman, M., and S. Thorley, 1998, « Overconfidence
and Trading volume», Working Paper, Santa Clara University.
197. Statman, M., S. Thorley, and K. Vorkink, 2006,
«Investor Overconfidence and Trading Volume», Review of Financial
Studies, 19(4), pp 1531-1565.
198. Stewart, P., 2006, «Behavioral Finance- Not To Be
Ignored», Trusts and Estates, 145(6), pp46-50.
199. Stout, LA., 2003, «The Mechanisms of Market
Inefficiency: An Introduction to the New Finance», Journal of Corporation
Law, 28(4), p.635-669.
200. Suh, J., 2005, «Home Bias among Institutional
Investors: A Study of The Economist Quarterly Portfolio Poll», Journal of
Japanese and International Economies, 19(1), pp72-95.
201. Svenson, O., 1981, «Are we all less risky and more
skilful than our fellow drivers?».
202. Tan, L.,TC. Chiang, JR. Mason and E. Nelling, 2008,
«Herding behavior in Chinese markets: An examination of A and B
shares», Pacific-Basin Finance Journal, 16, pp61-77.
203. Tao, L., 2003, «Overconfidence and Asset
Prices», Duke University.
204. Taylor, S., and J.D. Brown, 1988, «Illusion and
well-being: A social psychological perspective on Mental Health»,
Psychological Bulletin, 103(2), pp193-210.
205. Thaler, R., 1993, «Advances in behavioral
finance», New York: Russell Sage Foundation.
206. Topol, R., 1991, « Bubbles and volatility of stock
prices: effect of mimetic contagion», Economic Journal, 101, pp
786-800.
207. Trueman, B., 1994, «Analyst Forecasts and Herding
Behavior», Review of Financial Studies, 7(1), pp97-124.
208. Utukus, SP., 2004, «Book Reviews», Journal of
Pension Economics and Finance, 3(1), pp104-105.
209. Wagenaar, W., and G.B.Keren, 1986, «Does the expert
know? The reliability of predictions and confidence ratings of experts»,
eds. E. Hollnagel, G. Maneini, and
167
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
D. Woods, Intelligent Decision Support in Process Environments,
Berlin: Springer, pp 87-107.
210. Wang, A., 1997, «Overconfidence, Delegated Fund
Management, and Survival», Working Paper, Columbia University.
211. Wang, H., 2004, «Dynamic volume-volatility
relation», Working Paper.
212. Wang, J., 1993, «A model of intertemporal asset prices
under asymmetric information», Review of Economic Studies, 60,
pp249-282.
213. Weiner, R.J., and M.A. Green, 2004, «Do birds of a
feather flock together? Speculator Herding in Derivatives Markets»,
Working Paper, George Washington University.
214. Welch, I., 1992, «Sequential sales, learning, and
Cascades», the Journal of finance, 47(4), pp695-732.
215. Wermers, R., 1995, « Herding, Trade reversals, and the
Cascading by Institutional Investors », University of Colorado mimeo.
216. Wermers, R., 1999, «Mutual Fund Herding and the Impact
on Stock Prices», Journal of Finance, 54, pp581-622.
217. West, K.D, 1988, «Dividend innovations and stock price
volatility», Econometrica, 56, pp37-62.
218. West, K.D., 1988, «Bubbles, Fads and Stock Price
Volatility Tests: A Partial Evaluation», Journal of Finance, 43,
pp639-656.
219. Wu, C-H., C-S. Wu, and VW. Liu, 2009, «The
conservatism bias in an emerging stock market: Evidence from Taiwan»,
Pacific-Basin Finance Journal.
220. Zhou, RT., and RN. Lai, 2009, «Herding and Information
Based Trading», Journal of Empirical Finance.
168
L'énigme de volatilité excessive des cours
boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement
grégaire. « Validation empirique sur la BVMT »
|