WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

L'énigme de volatilité excessive des cours boursiers: explication par la finance comportementale à  travers l'excès de confiance et le comportement grégaire. "Validation empirique sur la BVMT (Bourse des Valeurs Mobilières de Tunis )"

( Télécharger le fichier original )
par Haifa Lanchly
Faculté des sciences économiques et de gestion de Tunis - Mastère en finance 2010
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe

115

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement grégaire.

+ Les entreprises tunisiennes qui composent l'échantillon utilisé au niveau des

trois chapitres sont :

ASTREE, Air Liquide Tunisie, STIL ,BH, ICF, AMS, Tunisie Leasing, Amen Bank, SPDIT, UIB, BNA, ATB, TUNISAIR, BT, ALKIMIA, UBCI, STB, BS, BIAT,CIL.

+ Tableau 1.1 : Statistiques descriptives de la série des prix

Date: 09/26/09
Time: 17:54

Sample: 1997 2008

 

DIVIDENDE

Mean

1.122333

Median

1.213000

Maximum

1.528000

Minimum

0.008000

Std. Dev.

0.382530

Skewness

-2.218016

Kurtosis

7.304477

Jarque-Bera

19.10345

Probability

0.000071

Sum

13.46800

Sum Sq. Dev.

1.609625

Observations

12

116

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.

Date: 09/26/09
Time: 17:55

Sample: 1997 2008

 

PRIX

Mean

36.03792

Median

35.07900

Maximum

52.68800

Minimum

28.39500

Std. Dev.

7.669389

Skewness

0.789453

Kurtosis

2.742842

Jarque-Bera

1.279537

Probability

0.527415

Sum

432.4550

Sum Sq. Dev.

647.0149

Observations

12

117

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

constante « en niveau »

Null Hypothesis: PRIX has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.192777 0.1361

Test critical values: 1% level -5.124875

5% level -3.933364

10% level -3.420030

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PRIX)

Method: Least Squares

Date: 09/26/09 Time: 17:56

Sample (adjusted): 1998 2008

Included observations: 11 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

PRIX(-1)
C
@TREND(1997)

-1.123187 31.88795 1.529708

0.351790 -3.192777

10.60629 3.006513

0.796726 1.919992

0.0128
0.0169
0.0911

R-squared

0.560519

Mean dependent var

1.478455

Adjusted R-squared

0.450649

S.D. dependent var

9.212354

S.E. of regression

6.828033

Akaike info criterion

6.906951

Sum squared resid

372.9763

Schwarz criterion

7.015468

Log likelihood

-34.98823

Hannan-Quinn criter.

6.838547

F-statistic

5.101646

Durbin-Watson stat

2.060256

Prob(F-statistic)

0.037304

 
 

118

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

en niveau »

Null Hypothesis: PRIX has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.240283 0.2043

Test critical values: 1% level -4.200056

5% level -3.175352

10% level -2.728985

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PRIX)

Method: Least Squares

Date: 09/26/09 Time: 17:59

Sample (adjusted): 1998 2008

Included observations: 11 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

PRIX(-1)

-0.733829

0.327561 -2.240283

0.0518

C

27.34292

11.78112 2.320911

0.0454

R-squared

0.358008

Mean dependent var

1.478455

Adjusted R-squared

0.286676

S.D. dependent var

9.212354

S.E. of regression

7.780619

Akaike info criterion

7.104115

Sum squared resid

544.8423

Schwarz criterion

7.176459

Log likelihood

-37.07263

Hannan-Quinn criter.

7.058511

F-statistic

5.018866

Durbin-Watson stat

2.058506

Prob(F-statistic)

0.051819

 
 

119

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

différence première »

Null Hypothesis: D(PRIX) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.524365 0.0072

Test critical values: 1% level -4.297073

5% level -3.212696

10% level -2.747676

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 10

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PRIX,2)

Method: Least Squares

Date: 09/26/09 Time: 18:02

Sample (adjusted): 1999 2008

Included observations: 10 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

D(PRIX(-1))

-1.454486

0.321478 -4.524365

0.0019

C

2.021124

2.928067 0.690259

0.5096

R-squared

0.719001

Mean dependent var

0.611000

Adjusted R-squared

0.683876

S.D. dependent var

16.37488

S.E. of regression

9.206756

Akaike info criterion

7.454609

Sum squared resid

678.1149

Schwarz criterion

7.515126

Log likelihood

-35.27304

Hannan-Quinn criter.

7.388222

F-statistic

20.46988

Durbin-Watson stat

2.118155

Prob(F-statistic)

0.001939

 
 

120

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.

« Validation empirique sur la BVMT »

tendance et constante « en niveau »

Null Hypothesis: DIVIDENDE has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.320162 0.8241

Test critical values: 1% level -5.124875

5% level -3.933364

10% level -3.420030

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DIVIDENDE)

Method: Least Squares

Date: 09/26/09 Time: 18:03

Sample (adjusted): 1998 2008

Included observations: 11 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

DIVIDENDE(-1)
C
@TREND(1997)

-1.101464 1.503915 -0.044551

0.834340 -1.320162

1.010099 1.488878

0.040171 -1.109018

0.2233
0.1748
0.2996

R-squared

0.315103

Mean dependent var

-0.111182

Adjusted R-squared

0.143879

S.D. dependent var

0.446674

S.E. of regression

0.413293

Akaike info criterion

1.297681

Sum squared resid

1.366489

Schwarz criterion

1.406198

Log likelihood

-4.137246

Hannan-Quinn criter.

1.229276

F-statistic

1.840297

Durbin-Watson stat

1.430533

Prob(F-statistic)

0.220039

 
 

121

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

constante « en niveau »

Null Hypothesis: DIVIDENDE has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.545842 0.4747

Test critical values: 1% level -4.200056

5% level -3.175352

10% level -2.728985

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DIVIDENDE)

Method: Least Squares

Date: 09/26/09 Time: 18:06

Sample (adjusted): 1998 2008

Included observations: 11 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

DIVIDENDE(-1)

-1.281239

0.828830 -1.545842

0.1565

C

1.456589

1.022007 1.425224

0.1878

R-squared

0.209807

Mean dependent var

-0.111182

Adjusted R-squared

0.122008

S.D. dependent var

0.446674

S.E. of regression

0.418539

Akaike info criterion

1.258872

Sum squared resid

1.576573

Schwarz criterion

1.331216

Log likelihood

-4.923795

Hannan-Quinn criter.

1.213269

F-statistic

2.389626

Durbin-Watson stat

1.220381

Prob(F-statistic)

0.156544

 
 

122

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

tendance ni constante « en niveau »

Null Hypothesis: DIVIDENDE has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.014160 0.2593

Test critical values: 1% level -2.792154

5% level -1.977738

10% level -1.602074

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 11

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DIVIDENDE)

Method: Least Squares

Date: 09/26/09 Time: 18:07

Sample (adjusted): 1998 2008

Included observations: 11 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

DIVIDENDE(-1)

-0.109011

0.107489 -1.014160

0.3344

R-squared

0.031464

Mean dependent var

-0.111182

Adjusted R-squared

0.031464

S.D. dependent var

0.446674

S.E. of regression

0.439591

Akaike info criterion

1.280563

Sum squared resid

1.932400

Schwarz criterion

1.316735

Log likelihood

-6.043094

Hannan-Quinn criter.

1.257761

Durbin-Watson stat

1.797977

 
 

123

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

tendance ni constante « en différence première »

Null Hypothesis: D(DIVIDENDE) has a unit root Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=2)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.022920 0.0067

Test critical values: 1% level -2.816740

5% level -1.982344

10% level -1.601144

*MacKinnon (1996) one-sided p-values.

Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 10

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DIVIDENDE,2) Method: Least Squares

Date: 09/26/09 Time: 18:37

Sample (adjusted): 1999 2008

Included observations: 10 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

D(DIVIDENDE(-1))

-1.610822

0.532870 -3.022920

0.0144

R-squared

0.488349

Mean dependent var

-0.106000

Adjusted R-squared

0.488349

S.D. dependent var

0.633078

S.E. of regression

0.452840

Akaike info criterion

1.348082

Sum squared resid

1.845573

Schwarz criterion

1.378340

Log likelihood

-5.740409

Hannan-Quinn criter.

1.314888

Durbin-Watson stat

1.277417

 
 

124

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

modèle avec tendance et constante « en niveau »

Null Hypothesis: RENDEMENT has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.967535 0.0011

Test critical values: 1% level -4.165756

5% level -3.508508

10% level -3.184230

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RENDEMENT) Method: Least Squares

Date: 05/09/10 Time: 14:48

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

RENDEMENT(-1)
C
@TREND(2005M01)

-0.718813 0.769962 0.016353

0.144702 -4.967535

0.223458 3.445670

0.006441 2.538678

0.0000
0.0013
0.0147

R-squared

0.360049

Mean dependent var

0.021498

Adjusted R-squared

0.330960

S.D. dependent var

0.649914

S.E. of regression

0.531596

Akaike info criterion

1.635836

Sum squared resid

12.43415

Schwarz criterion

1.753930

Log likelihood

-35.44214

Hannan-Quinn criter.

1.680276

F-statistic

12.37761

Durbin-Watson stat

1.977557

Prob(F-statistic)

0.000054

 
 

125

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

du marché : modèle avec tendance et constante « en niveau »

Null Hypothesis: VOLUME has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -9.636677 0.0000

Test critical values: 1% level -4.165756

5% level -3.508508

10% level -3.184230

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VOLUME)

Method: Least Squares

Date: 05/04/10 Time: 13:44

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

VOLUME(-1)
C
@TREND(2005M01)

-1.361640 0.039840 -0.000135

0.141298 -9.636677

0.007554 5.274238

0.000232 -0.581549

0.0000
0.0000
0.5638

R-squared

0.678686

Mean dependent var

-0.000285

Adjusted R-squared

0.664080

S.D. dependent var

0.037263

S.E. of regression

0.021597

Akaike info criterion

-4.770832

Sum squared resid

0.020523

Schwarz criterion

-4.652738

Log likelihood

115.1146

Hannan-Quinn criter.

-4.726393

F-statistic

46.46877

Durbin-Watson stat

2.099563

Prob(F-statistic)

0.000000

 
 

126

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

du marché : modèle avec constante « en niveau »

Null Hypothesis: VOLUME has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -9.694405 0.0000

Test critical values: 1% level -3.577723

5% level -2.925169

10% level -2.600658

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(VOLUME)

Method: Least Squares

Date: 05/04/10 Time: 13:51

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

VOLUME(-1)

-1.358968

0.140181 -9.694405

0.0000

C

0.036525

0.004919 7.425439

0.0000

R-squared

0.676216

Mean dependent var

-0.000285

Adjusted R-squared

0.669021

S.D. dependent var

0.037263

S.E. of regression

0.021438

Akaike info criterion

-4.805729

Sum squared resid

0.020680

Schwarz criterion

-4.726999

Log likelihood

114.9346

Hannan-Quinn criter.

-4.776102

F-statistic

93.98150

Durbin-Watson stat

2.088023

Prob(F-statistic)

0.000000

 
 

127

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Figure 2.2 : Corrélogramme de la série des rendements mensuels du marché

Date: 05/10/10 Time: 11:12

Sample: 2005M01 2008M12 Included observations: 48

 
 
 
 
 
 

Autocorrelation

Partial Correlation

 

AC

PAC

Q-Stat

Prob

. |***

|

. |***

|

1

0.434

0.434

9.6166

0.002

. |**

|

. | .

|

2

0.246

0.072

12.784

0.002

. | .

|

.*| .

|

3

-0.009

-0.173

12.788

0.005

. | .

|

. | .

|

4

-0.064

-0.025

13.009

0.011

.*| .

|

. | .

|

5

-0.078

0.000

13.350

0.020

. |*.

|

. |**

|

6

0.142

0.240

14.507

0.024

. |*.

|

. | .

|

7

0.123

-0.016

15.399

0.031

. |*.

|

. | .

|

8

0.168

0.036

17.088

0.029

. |*.

|

. |*.

|

9

0.195

0.148

19.437

0.022

. |*.

|

. |*.

|

10

0.192

0.090

21.769

0.016

. |*.

|

. |*.

|

11

0.165

0.079

23.538

0.015

. |*.

|

. | .

|

12

0.112

-0.024

24.375

0.018

.*| .

|

**| .

|

13

-0.156

-0.284

26.050

0.017

**| .

|

.*| .

|

14

-0.230

-0.109

29.793

0.008

**| .

|

.*| .

|

15

-0.255

-0.090

34.536

0.003

. | .

|

. |*.

|

16

-0.036

0.142

34.634

0.004

. | .

|

.*| .

|

17

-0.024

-0.142

34.680

0.007

. |*.

|

. |*.

|

18

0.208

0.130

38.155

0.004

. |*.

|

. | .

|

19

0.131

0.045

39.578

0.004

. | .

|

.*| .

|

20

0.019

-0.103

39.608

0.006

 
 
 
 
 
 
 
 
 

128

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Tableau 2.6 : test de causalité au sens de Granger

Pairwise Granger Causality Tests Date: 05/10/10 Time: 11:39

Sample: 2005M01 2008M12 Lags: 1

Null Hypothesis: Obs F-Statistic Prob.

VT does not Granger Cause REND 47 0.18812 0.6666

REND does not Granger Cause VT 2.86139 0.0978

+ Tableau 2.7 : décomposition du volume de transaction du marché et extraction de

la composante liée à l'excès de confiance

Dependent Variable: VT

Method: Least Squares

Date: 05/11/10 Time: 13:00

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

0.042351

0.009081 4.663807

0.0000

REND(-1)

-0.009797

0.005347 -1.832067

0.0736

R-squared

0.069411

Mean dependent var

0.026802

Adjusted R-squared

0.048731

S.D. dependent var

0.022696

S.E. of regression

0.022136

Akaike info criterion

-4.741632

Sum squared resid

0.022049

Schwarz criterion

-4.662902

Log likelihood

113.4283

Hannan-Quinn criter.

-4.712005

F-statistic

3.356468

Durbin-Watson stat

2.646820

Prob(F-statistic)

0.073565

 
 

129

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

AR(1) de la série des rendements mensuels du marché

Dependent Variable: REND

Method: Least Squares

Date: 05/10/10 Time: 11:14

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments Convergence achieved after 3 iterations

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.626358

0.149719 10.86277

0.0000

AR(1)

0.450498

0.135964 3.313366

0.0018

R-squared

0.196118

Mean dependent var

1.608733

Adjusted R-squared

0.178254

S.D. dependent var

0.620891

S.E. of regression

0.562839

Akaike info criterion

1.729974

Sum squared resid

14.25544

Schwarz criterion

1.808704

Log likelihood

-38.65440

Hannan-Quinn criter.

1.759601

F-statistic

10.97840

Durbin-Watson stat

2.056127

Prob(F-statistic)

0.001826

 
 

Inverted AR Roots

.45

 
 

130

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

AR(2) de la série des rendements mensuels du marché

Dependent Variable: REND

Method: Least Squares

Date: 05/10/10 Time: 11:15

Sample (adjusted): 2005M03 2008M12 Included observations: 46 after adjustments Convergence achieved after 3 iterations

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.656860

0.168234 9.848547

0.0000

AR(1)

0.405941

0.151438 2.680568

0.0104

AR(2)

0.091238

0.153719 0.593539

0.5559

 

R-squared

0.201127

Mean dependent var

1.622554

Adjusted R-squared

0.163970

S.D. dependent var

0.620399

S.E. of regression

0.567260

Akaike info criterion

1.766996

Sum squared resid

13.83671

Schwarz criterion

1.886255

Log likelihood

-37.64090

Hannan-Quinn criter.

1.811671

F-statistic

5.412904

Durbin-Watson stat

1.936018

Prob(F-statistic)

0.008003

 
 

Inverted AR Roots

.57

-.16

 

131

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

MA(1) de la série de rendement

Dependent Variable: REND Method: Least Squares

Date: 05/10/10 Time: 11:16 Sample: 2005M01 2008M12 Included observations: 48

Convergence achieved after 18 iterations

MA Backcast: 2004M12

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.607086

0.109575 14.66650

0.0000

MA(1)

0.322761

0.139720 2.310053

0.0254

R-squared

0.141194

Mean dependent var

1.604136

Adjusted R-squared

0.122524

S.D. dependent var

0.615075

S.E. of regression

0.576164

Akaike info criterion

1.775924

Sum squared resid

15.27037

Schwarz criterion

1.853890

Log likelihood

-40.62217

Hannan-Quinn criter.

1.805387

F-statistic

7.562736

Durbin-Watson stat

1.787916

Prob(F-statistic)

0.008490

 
 

Inverted MA Roots

-.32

 
 

132

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Date: 05/10/10 Time: 11:17 Sample: 2005M01 2008M12 Included observations: 48

Convergence achieved after 10 iterations

MA Backcast: 2004M11

2004M12

 
 

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.618529

0.134977 11.99112

0.0000

MA(1)

0.389769

0.142938 2.726835

0.0091

MA(2)

0.305590

0.146623 2.084183

0.0429

 

R-squared

0.218067

Mean dependent var

1.604136

Adjusted R-squared

0.183314

S.D. dependent var

0.615075

S.E. of regression

0.555848

Akaike info criterion

1.723817

Sum squared resid

13.90350

Schwarz criterion

1.840767

Log likelihood

-38.37160

Hannan-Quinn criter.

1.768012

F-statistic

6.274832

Durbin-Watson stat

1.899313

Prob(F-statistic)

0.003947

 
 

Inverted MA Roots

-.19+.52i

-.19-.52i

 

133

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Date: 05/10/10 Time: 11:17 Sample: 2005M01 2008M12 Included observations: 48

Convergence achieved after 13 iterations

MA Backcast: 2004M10

2004M12

 
 

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.638999

0.174563 9.389140

0.0000

MA(1)

0.421369

0.145450 2.897004

0.0059

MA(2)

0.513749

0.147268 3.488538

0.0011

MA(3)

0.268678

0.152973 1.756374

0.0860

 

R-squared

0.243721

Mean dependent var

1.604136

Adjusted R-squared

0.192156

S.D. dependent var

0.615075

S.E. of regression

0.552830

Akaike info criterion

1.732125

Sum squared resid

13.44735

Schwarz criterion

1.888058

Log likelihood

-37.57099

Hannan-Quinn criter.

1.791052

F-statistic

4.726523

Durbin-Watson stat

1.965434

Prob(F-statistic)

0.006057

 
 

Inverted MA Roots

.03-.74i

.03+.74i -.49

 

134

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Date: 05/10/10 Time: 11:18 Sample: 2005M01 2008M12 Included observations: 48

Convergence achieved after 35 iterations

MA Backcast: 2004M09 2004M12

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.645445

0.191155 8.607900

0.0000

MA(1)

0.452147

0.153208 2.951199

0.0051

MA(2)

0.561550

0.169346 3.315986

0.0019

MA(3)

0.324430

0.171569 1.890965

0.0654

MA(4)

0.046320

0.161461 0.286881

0.7756

 

R-squared

0.244192

Mean dependent var

1.604136

Adjusted R-squared

0.173884

S.D. dependent var

0.615075

S.E. of regression

0.559048

Akaike info criterion

1.773169

Sum squared resid

13.43898

Schwarz criterion

1.968085

Log likelihood

-37.55604

Hannan-Quinn criter.

1.846828

F-statistic

3.473181

Durbin-Watson stat

1.999096

Prob(F-statistic)

0.015196

 
 

Inverted MA Roots

.07-.75i

.07+.75i -.22

-.38

135

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Tableau 2.10 : estimation du processus ARMA (p,q) par la méthode MCO

ARMA(1,0) de la série de rendement

Dependent Variable: REND

Method: Least Squares

Date: 05/10/10 Time: 11:14

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments Convergence achieved after 3 iterations

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.626358

0.149719 10.86277

0.0000

AR(1)

0.450498

0.135964 3.313366

0.0018

R-squared

0.196118

Mean dependent var

1.608733

Adjusted R-squared

0.178254

S.D. dependent var

0.620891

S.E. of regression

0.562839

Akaike info criterion

1.729974

Sum squared resid

14.25544

Schwarz criterion

1.808704

Log likelihood

-38.65440

Hannan-Quinn criter.

1.759601

F-statistic

10.97840

Durbin-Watson stat

2.056127

Prob(F-statistic)

0.001826

 
 

Inverted AR Roots

.45

 
 

136

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Sample (adjusted): 2005M02 2008M12

Included observations: 47 after adjustments

Convergence achieved after 6 iterations

MA Backcast: 2005M01

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.643209

0.169261 9.708140

0.0000

AR(1)

0.593637

0.263616 2.251904

0.0294

MA(1)

-0.185154

0.317686 -0.582821

0.5630

R-squared

0.202620

Mean dependent var

1.608733

Adjusted R-squared

0.166376

S.D. dependent var

0.620891

S.E. of regression

0.566892

Akaike info criterion

1.764407

Sum squared resid

14.14014

Schwarz criterion

1.882501

Log likelihood

-38.46356

Hannan-Quinn criter.

1.808847

F-statistic

5.590363

Durbin-Watson stat

1.951621

Prob(F-statistic)

0.006865

 
 

Inverted AR Roots

.59

 
 

Inverted MA Roots

.19

 
 

137

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments Convergence achieved after 30 iterations

MA Backcast: 2004M12

2005M01

 
 

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.628843

0.164336 9.911650

0.0000

AR(1)

0.221043

0.316911 0.697493

0.4892

MA(1)

0.169719

0.284822 0.595877

0.5544

MA(2)

0.413889

0.156674 2.641717

0.0115

 

R-squared

0.247255

Mean dependent var

1.608733

Adjusted R-squared

0.194738

S.D. dependent var

0.620891

S.E. of regression

0.557165

Akaike info criterion

1.749355

Sum squared resid

13.34862

Schwarz criterion

1.906814

Log likelihood

-37.10984

Hannan-Quinn criter.

1.808608

F-statistic

4.708095

Durbin-Watson stat

1.934337

Prob(F-statistic)

0.006274

 
 

Inverted AR Roots

.22

 
 

Inverted MA Roots

-.08-.64i

-.08+.64i

 

138

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments Convergence achieved after 37 iterations

MA Backcast: 2004M11

2005M01

 
 

Variable

Coefficient

Std. Error t-Statistic

Prob.

C

1.844815

0.141639 13.02476

0.0000

AR(1)

0.884596

0.076870 11.50771

0.0000

MA(1)

-0.636796

0.170541 -3.733981

0.0006

MA(2)

-0.112171

0.180765 -0.620537

0.5383

MA(3)

-0.198003

0.157951 -1.253572

0.2169

 

R-squared

0.344105

Mean dependent var

1.608733

Adjusted R-squared

0.281639

S.D. dependent var

0.620891

S.E. of regression

0.526243

Akaike info criterion

1.654182

Sum squared resid

11.63115

Schwarz criterion

1.851007

Log likelihood

-33.87328

Hannan-Quinn criter.

1.728249

F-statistic

5.508667

Durbin-Watson stat

1.985102

Prob(F-statistic)

0.001171

 
 

Inverted AR Roots

.88

 
 

Inverted MA Roots

.97

-.16+.42i -.16-.42i

 

139

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Tableau 2.11 : effet de l'excès de confiance sur la volatilité conditionnelle des

rendements mensuels du marché (Période : 01 Janvier 2005- 31Décembre 2008)

Dependent Variable: RT

Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) Date: 05/26/10 Time: 13:50

Sample (adjusted): 2005M02 2008M11

Included observations: 46 after adjustments

Convergence achieved after 11 iterations

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(6) *RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1)) + C(8)*EC + C(9)*NEC

Coefficient Std. Error z-Statistic Prob.

GARCH 3.185270 0.851250 3.741872 0.0002

C 0.382515 0.024292 15.74632 0.0000

AR(1) 0.174814 0.018639 9.379135 0.0000

Variance Equation

C(4) -2.275020 0.176279 -12.90577 0.0000

C(5) -0.148661 0.058743 -2.530695 0.0114

C(6) -0.129758 0.052386 -2.476936 0.0133

C(7) -0.162290 0.024673 -6.577727 0.0000

C(8) -70.82283 3.801153 -18.63193 0.0000

C(9) 0.494269 0.196618 2.513855 0.0119

GED PARAMETER 0.261403 0.055364 4.721502 0.0000

R-squared 0.909826 Mean dependent var 1.591564

Adjusted R-squared 0.887282 S.D. dependent var 0.616368

S.E. of regression 0.206936 Akaike info criterion -0.817216

Sum squared resid 1.541617 Schwarz criterion -0.419685

Log likelihood 28.79597 Hannan-Quinn criter. -0.668299

F-statistic 40.35850 Durbin-Watson stat 1.601845

Prob(F-statistic) 0.000000

140

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

modèle avec tendance et constante « en niveau »

Null Hypothesis: RMT has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.939672 0.0011

Test critical values: 1% level -4.165756

5% level -3.508508

10% level -3.184230

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RMT)

Method: Least Squares

Date: 05/22/10 Time: 21:49

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

RMT(-1)
C
@TREND(2005M01)

-0.714581 0.008679 -0.000220

0.144662 -4.939672

0.010754 0.807034

0.000388 -0.566927

0.0000
0.4240
0.5736

R-squared

0.357206

Mean dependent var

-0.000322

Adjusted R-squared

0.327988

S.D. dependent var

0.043877

S.E. of regression

0.035969

Akaike info criterion

-3.750641

Sum squared resid

0.056924

Schwarz criterion

-3.632547

Log likelihood

91.14007

Hannan-Quinn criter.

-3.706201

F-statistic

12.22556

Durbin-Watson stat

1.876243

Prob(F-statistic)

0.000060

 
 

141

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

marché : modèle avec constante « en niveau »

Null Hypothesis: RMT has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.949662 0.0002

Test critical values: 1% level -3.577723

5% level -2.925169

10% level -2.600658

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RMT)

Method: Least Squares

Date: 05/22/10 Time: 21:52

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

RMT(-1)

-0.708900

0.143222 -4.949662

0.0000

C

0.003374

0.005260 0.641442

0.5245

R-squared

0.352510

Mean dependent var

-0.000322

Adjusted R-squared

0.338121

S.D. dependent var

0.043877

S.E. of regression

0.035696

Akaike info criterion

-3.785916

Sum squared resid

0.057340

Schwarz criterion

-3.707187

Log likelihood

90.96903

Hannan-Quinn criter.

-3.756290

F-statistic

24.49915

Durbin-Watson stat

1.871484

Prob(F-statistic)

0.000011

 
 

142

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

modèle sans tendance ni constante « en niveau »

Null Hypothesis: RMT has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.940016 0.0000

Test critical values: 1% level -2.615093

5% level -1.947975

10% level -1.612408

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RMT)

Method: Least Squares

Date: 05/22/10 Time: 21:52

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

RMT(-1)

-0.695860

0.140862 -4.940016

0.0000

R-squared

0.346590

Mean dependent var

-0.000322

Adjusted R-squared

0.346590

S.D. dependent var

0.043877

S.E. of regression

0.035467

Akaike info criterion

-3.819368

Sum squared resid

0.057865

Schwarz criterion

-3.780003

Log likelihood

90.75514

Hannan-Quinn criter.

-3.804555

Durbin-Watson stat

1.875073

 
 

143

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

modèle avec tendance et constante « en niveau »

Null Hypothesis: CSADT has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.012242 0.0149

Test critical values: 1% level -4.165756

5% level -3.508508

10% level -3.184230

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CSADT)

Method: Least Squares

Date: 05/22/10 Time: 21:57

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

CSADT(-1)
C
@TREND(2005M01)

-0.535679 0.023348 9.45E-05

0.133511 -4.012242

0.009602 2.431630

0.000301 0.314152

0.0002
0.0192
0.7549

R-squared

0.269695

Mean dependent var

0.000336

Adjusted R-squared

0.236499

S.D. dependent var

0.031533

S.E. of regression

0.027553

Akaike info criterion

-4.283725

Sum squared resid

0.033403

Schwarz criterion

-4.165630

Log likelihood

103.6675

Hannan-Quinn criter.

-4.239285

F-statistic

8.124395

Durbin-Watson stat

2.021166

Prob(F-statistic)

0.000993

 
 

144

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

modèle avec constante « en niveau »

Null Hypothesis: CSADT has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -4.059579 0.0026

Test critical values: 1% level -3.577723

5% level -2.925169

10% level -2.600658

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CSADT)

Method: Least Squares

Date: 05/22/10 Time: 21:58

Sample (adjusted): 2005M02 2008M12 Included observations: 47 after adjustments

 

Coefficient

Std. Error t-Statistic

Prob.

CSADT(-1)

-0.528398

0.130161 -4.059579

0.0002

C

0.025272

0.007319 3.453198

0.0012

R-squared

0.268057

Mean dependent var

0.000336

Adjusted R-squared

0.251791

S.D. dependent var

0.031533

S.E. of regression

0.027275

Akaike info criterion

-4.324038

Sum squared resid

0.033478

Schwarz criterion

-4.245308

Log likelihood

103.6149

Hannan-Quinn criter.

-4.294411

F-statistic

16.48018

Durbin-Watson stat

2.031446

Prob(F-statistic)

0.000194

 
 

145

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Tableau 3.8: Ecart-type transversal absolu et comportement grégaire

(Période : 01 Janvier 2005- 31 Décembre 2008)

Dependent Variable: CSADT Method: Least Squares

Date: 05/22/10 Time: 22:03 Sample: 2005M01 2008M12 Included observations: 48

CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.026645
0.698285
1.935946

0.005661 4.707131

0.413730 1.687779

4.726152 0.409624

0.0000
0.0984
0.6840

R-squared

0.554798

Mean dependent var

0.046920

Adjusted R-squared

0.535011

S.D. dependent var

0.030625

S.E. of regression

0.020883

Akaike info criterion

-4.839296

Sum squared resid

0.019625

Schwarz criterion

-4.722346

Log likelihood

119.1431

Hannan-Quinn criter.

-4.795100

F-statistic

28.03887

Durbin-Watson stat

1.468483

Prob(F-statistic)

0.000000

 
 

146

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

+ Tableau 3.9: Estimation du comportement grégaire dans les marchés boursiers

tunisien haussier et baissier

Le marché boursier tunisien haussier

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 09:24

Sample: 1 28

Included observations: 28

CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.028329 1.082235 -8.003066

0.006605 4.289302

0.526320 2.056231

6.358469 -1.258647

0.0002
0.0503
0.2198

R-squared

0.378326

Mean dependent var

0.045965

Adjusted R-squared

0.328593

S.D. dependent var

0.018985

S.E. of regression

0.015557

Akaike info criterion

-5.387715

Sum squared resid

0.006050

Schwarz criterion

-5.244979

Log likelihood

78.42801

Hannan-Quinn criter.

-5.344079

F-statistic

7.607017

Durbin-Watson stat

1.312408

Prob(F-statistic)

0.002627

 
 

147

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Le marché boursier tunisien baissier

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 09:26

Sample: 1 20

Included observations: 20

CSADT=C(1)+C(2)* ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.016722
1.165808
1.915700

0.007272 2.299479

0.508576 2.292300

5.496555 0.348527

0.0344
0.0349
0.7317

R-squared

0.810549

Mean dependent var

0.048258

Adjusted R-squared

0.788261

S.D. dependent var

0.042480

S.E. of regression

0.019547

Akaike info criterion

-4.894476

Sum squared resid

0.006496

Schwarz criterion

-4.745116

Log likelihood

51.94476

Hannan-Quinn criter.

-4.865320

F-statistic

36.36660

Durbin-Watson stat

1.665378

Prob(F-statistic)

0.000001

 
 

+ Tableau 3.10: Estimation du comportement grégaire durant les périodes de fort et

faible volume de transactions sur le marché boursier tunisien

Fort volume de transactions sur le marché boursier tunisien

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 09:35

Sample (adjusted): 1 22

Included observations: 22 after adjustments CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.028042
0.554958
4.390150

0.011127 2.520083

0.701298 0.791330

7.438069 0.590227

0.0208
0.4385
0.5620

R-squared

0.585401

Mean dependent var

0.054959

Adjusted R-squared

0.541759

S.D. dependent var

0.038630

S.E. of regression

0.026150

Akaike info criterion

-4.323832

Sum squared resid

0.012992

Schwarz criterion

-4.175054

Log likelihood

50.56216

Hannan-Quinn criter.

-4.288785

F-statistic

13.41370

Durbin-Watson stat

2.214351

Prob(F-statistic)

0.000233

 
 

148

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Faible volume de transactions sur le marché boursier tunisien

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 09:38

Sample: 1 25

Included observations: 25

CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.020427 1.617475 -13.94165

0.005896 3.464440

0.531712 3.042015

7.192320 -1.938407

0.0022
0.0060
0.0655

R-squared

0.508932

Mean dependent var

0.040990

Adjusted R-squared

0.464289

S.D. dependent var

0.020025

S.E. of regression

0.014657

Akaike info criterion

-5.495696

Sum squared resid

0.004726

Schwarz criterion

-5.349431

Log likelihood

71.69620

Hannan-Quinn criter.

-5.455128

F-statistic

11.40015

Durbin-Watson stat

1.614857

Prob(F-statistic)

0.000400

 
 

+ Tableau 3.11: Estimation du comportement grégaire durant les périodes de forte

et faible volatilité sur le marché boursier tunisien

Forte volatilité sur le marché boursier tunisien

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 12:29

Sample: 1 14

Included observations: 14

CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.136819 -2.992282 29.78506

0.090425 1.513067

2.855325 -1.047965

21.20297 1.404759

0.1585
0.3171
0.1877

R-squared

0.399241

Mean dependent var

0.076183

Adjusted R-squared

0.290012

S.D. dependent var

0.034976

S.E. of regression

0.029471

Akaike info criterion

-4.023386

Sum squared resid

0.009554

Schwarz criterion

-3.886445

Log likelihood

31.16370

Hannan-Quinn criter.

-4.036063

F-statistic

3.655083

Durbin-Watson stat

1.919359

Prob(F-statistic)

0.060653

 
 

149

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Faible volatilité sur le marché boursier tunisien

Dependent Variable: CSADT

Method: Least Squares

Date: 05/24/10 Time: 12:25

Sample: 1 34

Included observations: 34

CSADT=C(1)+C(2)*ABS(RMT)+C(3)*RMT^2

Variable

Coefficient

Std. Error t-Statistic

Prob.

C(1)

C(2)

C(3)

0.026610 -0.194768 69.53997

0.007279 3.655846

1.244769 -0.156469

44.83511 1.551016

0.0009
0.8767
0.1310

R-squared

0.390156

Mean dependent var

0.034871

Adjusted R-squared

0.350811

S.D. dependent var

0.018465

S.E. of regression

0.014878

Akaike info criterion

-5.493817

Sum squared resid

0.006862

Schwarz criterion

-5.359138

Log likelihood

96.39489

Hannan-Quinn criter.

-5.447887

F-statistic

9.916345

Durbin-Watson stat

1.959261

Prob(F-statistic)

0.000469

 
 

150

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Références bibliographiques

151

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à
travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

Références bibliographiques

1. Acker, D., and NW. Duck, 2008, «Cross-cultural overconfidence and biased self-attribution», The Journal of Socio-Economics, 37, pp 1815-1824.

2. Acta Psychological, 47(2), pp143-148.

3. Admiti, A., and P. Pfeiderer, 1997, «Does It All Add Up? Benchmarks and the Compensation of Active Portflolio Managers», Journal of Business, 70, pp323-350.

4. Aftalion, F., 2005, « Le MEDAF et la Finance Comportementale», Revue Française de Gestion, 31, pp203-214.

5. Akhter, S., and MA. Misir , 2005, «Capital Markets Efficiency: Evidence from the Emerging Capital Market with Particular Reference to Dhaka Stock Exchange», South Asian Journal of Management, 12(3), pp35-51.

6. Albouy, M., et G. Charreaux, «La finance comportementale ou l'émergence d'un nouveau paradigme dominant?», Revue Française de Gestion, 2005/4, No157, pp139-143.

7. Alpert, M., and H. Raiffa, 1982, « A progress Report on the Training of probability Assessors» in Judgment Under Uncertainty: Heuristics and Biases, ed D. Kahneman, P. Slovic, and A. Tversky, Cambridge university press, pp 294-305.

8. Asch, S., 1952, Social Psychology, Englewood Cliffs, New Jersey, Prentice-Hall.

9. Avramov, D., T. Chordia, and A. Goyal, 2006, «Liquidity and autocorrelations in individual stock returns», Journal of Finance, 61(5), pp2365-2394.

10. Baker, HK., and JR. Nofsinger, 2002, «Psychological Biases of Investors», Financial Services Review, 11(2), pp97-116.

11. Banerjee, A.V., 1992, «A simple model of Herd behavior», The Quarterly Journal of Economics, 107(3), pp 797-817.

152

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

12. Banz, RW., 1981, « The relationship between return and market value of common stocks», Journal of Financial Economics, 9(1), pp3-18.

13. Barber, BM., and T. Odean, 2000, «Trading is hazardous to your wealth: The common stock investment performance of individual investors», Journal of Finance, 55(2), pp773-806.

14. Barber, BM., and T. Odean, 2001, «Boyswill be boys: Gender, Overconfidence and Common Stock Investment», Quarterly Journal of Economics, 116(1), pp261-292.

15. Barberis, N., A. Schleifer, and R. Vishny, 1998, «A model of investor sentiment», Journal of Financial Economics, 49, pp 307-343.

16. Barberis, N., and R. Thaler, 2002, «A survey of Behavioral Finance», Hand Book of the Economics of Finance. Elsevier Science B.V. 1052-1121.

17. Barberis, N., M. Huang, and T. Santos, 2001, «Prospect theory and Asset prices», The Quarterly Journal of Economics, 116(1), pp1-53.

18. Barberis,N., and R. Thaler, 2002, « A Survey of Behavioral Finance», Working Paper.

19. Basu, S, 1977, «Investment performance of common Stocks in relation to their price-earnings ratios: A test of the Efficient Market Hypothesis», The Journal of Finance, 32(3), pp 663-682.

20. Baumann, AO., RB.Deber, and GG.Thompson, 1991, «Overconfidence among Physicians and Nurses: The Micro-Certainty, Macro-Uncertainty Phenomenon», Social Science et Medicine, 32, pp167-174.

21. Becker, G.S., 1991, «A Note on Restaurant Pricing and Other Examples of Social Influence on Prices», Journal of Political Economy, 99 (5), pp1109-1116.

22. Benos, A.V., 1996, «Overconfidence speculators in call markets: Trade pattern and survival», Working Paper, HEC school of management.

23. Benos, A.V., 1998, «Aggressiveness and survival of overconfident traders», Journal of Financial Markets, 1 (3-4), pp353-383.

24. Bikhchandani, S., and S. Sharma, 2000, «Herd Behavior in Financial Markets», IMF Staff Papers, 47(3), pp 279-310.

153

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

25. Bikhchandani, S., D. Hirshleifer and I. Welch, 1998, «Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades», Journal of Economic Perspectives, 12(3), pp151-170.

26. Bikhchandani, S., D. Hirshleifer, and I. Welch, 1992, «A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades», Journal of Political Economy, 100(5), pp992-1026.

27. Black, F., 1986, «Noise», Journal of Finance, 41(3), pp529-543.

28. Boubaker, A., 2004, « Tests de l'efficience informationnelle sur le marché boursier tunisien», Annales d'Economie et de Gestion, 7(14), pp83-117.

29. Bourbonnais, R., 2000, «Econométrie-Manuel et Exercices Corrigés», 3ème édition, DUNOD, pp 1-314.

30. Box, G. and M. Jenkins, 1976, «Time Series Analysis: Forecasting and Control», Holden-Day, revised edition.

31. Brenan, M., 1993, «Agency and Asset Prices», Finance Working Paper N°. 6-93, UCLA.

32. Bulkey, G., and I. Tonks, 1992, «Trading Rules and Excess Volatility», Journal of Financial and Quantitative Analysis, 27(3), pp365-382.

33. Busse, JA ., and TC. Green, 2002, «Market Efficiency in Real-Time», Journal of Financial Economics, 65, pp415-437.

34. Cajueiro, DO., and B.M. Tabak, 2009, «Multifractality and herding behavior in the Japanese stock market», Chaos, Solitons and Fractals, 40(1), pp 497-504.

35. Calvo, G., and E. Mendoza, 1998, «Rational herd behavior and globalization of securities markets», Mimeo, University of Maryland.

36. Campbell, J.Y and R.J. Shiller, 1987, «Co-integration and tests of present value models», Journal of Political Economy, 95, pp1062-1088.

37. Chan, WS., RM. Frankel, and SP. Kothari, 2003, «Testing Behavioral Finance Theories Using Trends and Sequences in Financial Performance», Social Science Research Network.

154

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

38. Chang, EC., JW. Cheng, and A. Khorana, 2000, «An examination of herd behavior in equity markets: An international perspective», Journal of Banking and Finance, 24(10), pp 1651-1679.

39. Chari, V.V., and P.J. Kehoe, 2002, «On the Robustness of Herds», Working Paper 622, Federal Reserve Bank of Minneapolis.

40. Chen, G., KA. Kim, JR. Nofsinger, and OM. Rui, 2007,«Trading Performance, Disposition Effect, Overconfidence, Representativeness Bias, and Experience of Emerging Market Investors», Journal of behavioral decision making, 20(4),p.425.

41. Chen, G., M. Firth, and O. Riu, 2001, «The Dynamic Relation Between Stock Returns, Trading Volume, and Volatility», Financial Review, 38, 153-174.

42. Chen, J., 2003, «An Entropy Theory of Psychology and its Implication to Behavioral Finance «, Social Science Research Network Electronic Paper Collection.

43. Chirstensen-Szalanski, Jay J., and JB. Bushyhead, 1981, «Physician's use of probabilistic information in a real clinical setting», Journal of Experimental Psychology: Human Perception and Performance, 7(4), pp928-935.

44. Choe, H., B. Kho, and R. Stulz, 1999, «Do foreign investors destabilize stock markets? The Korean experience in 1997», Journal of Financial Economics, 54(2), pp227-264.

45. Christie, WG., and RD .Huang, 1995, «Following the Pied Piper: Do Individual Returns Herd around the Market?», Financial Analysts Journal, 51(4), pp31-37.

46. Chuang, W-I., and B-S. Lee, 2006, «An empirical evaluation of the overconfidence hypothesis», Journal of Banking and Finance, 30(9), pp 2489-2515.

47. Clement, MB., and SY. Tse, 2005, «Financial Analyst Characteristics and Herding Behavior in Forecasting», Journal of Finance, 60(1), pp307-341.

48. Cooper, A.C., C.Y. Woo and W.C. Dunkelberg, 1988, «Entrepreneur's perceived chances for success», Journal of Business Venturing, 3, pp97-108.

49. Cote,I., and D.Sanders, 1997, « Herding Behavior: Explanations and Implications», Behavioral Research in Accounting, 9(1), pp20-45.

155

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

50. Coval, JD., and T. Shumway, 2005, «Do Behavioral Biases Affect Prices?», Journal of Finance, 60(1), pp1-34.

51. Coval, JD., and TJ. Moskowitz, 1999, «Home Bias at Home: Local Equity Preference in Domestic Portfolios», Journal of Finance, 54(6), pp2045-2073.

52. Coval, JD., and TJ. Moskowitz, 2001, «The Geography of Investment: Informed Trading and Asset Prices», Journal of Political Economy, 109(4), pp 811-841.

53. Cowles, A., 1960, «A Revision of Previous Conclusions Regarding Stock Price Behavior», Economtrica, 28(4), pp909-915.

54. Cowles, A., and H. Jones, 1937, «Some a posteriori probabilities in stock market action», Econometrica, 5, pp280-294.

55. Cuthberston, K., and S. Hyde, 2002, « Excess volatility and efficiency in French and German stock markets», Economic Modelling, 19, pp 399-418.

56. Daniel, K., D. Hirshleifer, and A. Subrahmanyam, 1997, «A Theory of Overconfidence, Self-Attribution, and Security Market Under-and Over reactions», Working Paper.

57. Daniel, K., D. Hirshleifer, and A. Subrahmanyam, 1998, «Investor psychology and security market under- and over reactions», Journal of Finance, 53 (6), pp1839- 1885.

58. Daniel, K., D. Hirshleifer, and SH. Teoh, 2002, «Investor psychology in capital markets: Evidence and policy implications», Journal of Monetary Economics, 49, pp139-209.

59. Darrat, AF., M.Zhong, and L.Cheng, 2007, « Testing the Implications of Overconfidence for Intraday Trading», Journal of Banking and Finance, 31(9), pp2711-2729.

60. De Bondt, W.F ., 1993, «Betting on trends. Intuitive forecasts of financial risk and return», International Journal of Forecasting, 9(3), pp355-371.

61. De Bondt, W.F., and R. Thaler, 1985, « Does the Stock Market Overreact?», Journal of Finance, 40(3), pp793-808.

156

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

62. De Long, J.B., and M. Becht , 1992, « Excess volatility and the German stock market», NBER Working Paper.

63. De Long, JB., A. Shleifer, LH. Summers, and RJ. Waldmann, 1990, «Noise Trader Risk in Financial Markets», Journal of Political Economy, 98(4), pp703-738.

64. Debondt, W.F., and R. Thaler., 1995, « Financial decision making in markets and firms: A behavioural perspective», in R.A. Jarrow, V. Maksimovic, and W.T. Ziemba, (eds.): Handbooks in Operations Research and Management Science, Finance, 9, pp383-410.

65. Demirer, R.J., D. Gubo, and A.M. Kutan, 2007, «An Analysis of Cross -Country Herd Behavior in Stock Markets: A Regional Perspective», Working Paper, London.

66. Demirer,R., A.M. Kutan, 2006, « Does Herding Behavior exist in Chinese Stock Markets?», Journal of International Financial Markets, Institutions and Money, 16(2), pp123-142.

67. Devenow, A., and I. Welch, 1996, «Rational Herding in Financial Economics», European Economic Review, 40(3-5), pp 603-615.

68. Dickey, D.A., and W.A. Fuller, 1981, Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, Econometrica 49, 1057-1072.

69. Dumas, B., 2003, «Why the excess volatility?», Europlace Institute Conference.

70. Dunbar, FC., and D. Heller, 2006,« Fraud on The Market Meets Behavioral Finance», Delaware Journal of Corporate Law, 31(2), p.455.

71. Editorial Viewpoint, 1988, «October'87 and the Efficient Market», Financial Analysts Journal, 44(1), pp6-7.

72. Editorial, 2004, «Introduction to the special issue on behavioral finance», Journal of Empirical Finance, 11, pp 423-427.

73. Eichengreen, B.J., D.J. Mathieson., B. Chadha., A. Jansen., L. Kodes., and S. Sharma., 1998, «Hedge Funds and Financial Market dynamics», Occasional Paper, N° 166, International Monetary Fund.

157

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

74. Fama, EF., 1963, «Mandelbrot and the Stable Paretian Hypothesis», Journal of Business, 36(4), pp420-429.

75. Fama, EF., 1965a, «Random Walks in Stock Market Prices», Financial Analysts Journal, 21, pp55-59.

76. Fama, EF., 1965b, « The Behavior of Stock Market Prices», Journal of Business, 38(1), pp34-105.

77. Fama, EF., 1970, «Efficient Capital Markets: A Review of Theory and Empirical Work», Journal of Finance, 25(2), pp 383-417.

78. Fama, EF., 1991, «Efficient Capital Markets II», Journal of Finance, 46(5), pp 1575- 1617.

79. Fama, EF., 1998, «Market efficiency, long-term returns, and behavioral finance», Journal of Financial Economics, 49, pp 283-306.

80. Fama, EF., and KR. French, 1996, «Multifactor Explanations of Asset Pricing Anomalies», Journal of Finance, 51(1), pp55-84.

81. Fama, EF., and ME. Blume, 1966, «Filter Rules and Stock-Market Trading», Journal of Business, 39(1), pp226-241.

82. Fama, EF., and RF. French, 1992, « The Cross -Section of Expected Stock Returns», Journal of Finance, 47(2), pp427-465.

83. Fernandes, JLB., and JRH. Ornelas, 2005, «Momentum and Reversal Puzzle in Emerging Markets», Social Science Research Network.

84. Flavin, MA., 1983, «Excess Volatility in the Financial Markets: A Reassessment of the Empirical Evidence», Journal of Political Economy, 91(6), pp929-956.

85. French, KR., and R. Roll, 1986, «Stock Return Variances: The Arrival of Information and the Reaction of Traders», Journal of Financial Economics, 17(1), pp5-26.

86. Frieder, L., «Evidence on Behavioral Biases in Trading Activity», The Anderson School, Working Paper.

87. Friedman, M., 1953, «The case of Flexible Exchange Rates», in Milton Friedman (ed.), Essays in Positive Economics, University of Chicago Press, Chicago; IL.

158

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

88. Froot, K., and E. Dabora, 1999, «How are stock prices affected by the location of trade?», Journal of Financial Economics, 53(2), pp189-216.

89. Froot, K.A., D.S. Scharfstein and J.C. Stein, 1992, «Herd on the street; Informational Inefficiencies in a market with short-term speculation», Journal of Finance, 47, pp1461-1484.

90. Gervais, S., and T. Odean, 2001, «Learning to Be Overconfident», Review of Financial Studies, 14(1), pp1-27.

91. Glaser, M., and M. Weber, 2007, «Overconfidence and trading volume», Geneve Risk and Insurance Review, 32, pp1-36.

92. Glaser, M., and M. Weber, 2009, «Which past returns affect trading volume?», Journal of Financial Markets, 12, pp1-31.

93. Gleason, KC., I. Mathur, and MA. Peterson, 2004, «Analysis of intraday herding behavior among the sector ETFs», Journal of Empirical Finance, 11, pp 681-694.

94. Graham, J.R, 1999, «Herding among Investment Newsletters: Theory and Evidence», journal of Finance, 54, pp237-268.

95. Granger, C., 1969, «Investigating Causal Relationship between Econometric Methods and Cross-Spectral Methods», Econometrica, 37, 424-439.

96. Griffin, D., and A. Tversky, 1992, «The Weighing of Evidence and The Determinants of Confidence», Cognitive Psychology, 24, pp411-435.

97. Grossman, SJ., and RJ. Shiller, 1981, «The Determinants of the Variability of Stock Market Prices», American Economic Review, 71(2), pp222-227.

98. Harris, M., and A. Raviv, 1993, «Differences of Opinion Make a Horse Race», Review of financial Studies, 6, pp 222-227.

99. Hetherington, A., 2006, «Betting Against Efficiency: Behavioral Finance in an NFL Gambling Exchange», Yale University, Social Science Research Network.

100. Hibbert, AM., RT. Daigler, and B. Dupoyet, 2008, «A behavioral explanation for the negative asymmetric return-volatility relation», Journal of Banking and Finance, 32(10), pp 2254-2266.

159

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

101. Hiraki, T., and A. Ito, 2009, «Investor biases in Japan: Another pathology of Keiretsu», Pacific- Basin Finance Journal, 17, pp 100-124.

102. Hirshleifer, D., 2001, «Investor Psychology and Asset Pricing» Journal of Finance, 56(4), pp1533-1598.

103. Hirshleifer, D., 2007, «Psychological Bias as a driver of Financial Regulation», Social Science Research Network.

104. Hirshleifer, D., and G.Y.Luo, «On the Survival of Overconfident Traders in a Competitive Securities Market», Working Paper.

105. Hong, H., T. Lim, and J. Stein, 2000, «Bad News travels slowly, Size, Analyst Coverage, and the Profitability of Momentum Strategies», Journal of Finance, 55, pp265-295.

106. Huberman, G., 2001, «Familiarity Breeds Investment», Review of Financial Studies, 14(3), pp659-680.

107. Hwang, S., and M. Salmon, 2001, «A New measure of Herding and Empirical Evidence».

108. Hwang, S., and M. salmon, 2004, «Market stress and herding», Journal of Empirical Finance, 11, pp 585-616.

109. Jensen. MC., 1978, «Some Anomalous Evidence Regarding Market Efficiency», Journal of Financial Economics, 6(2/3), pp95-101.

110. John von Neumann and Oskar Morgenstern: Theory of Games and Economic Behavior, Princeton University Press (1944).

111. Jondeau, E., 2001, « Le comportement mimétique sur les marchés de capitaux », Bulletin de la banque de France, No 95, pp85-95.

112. Kahneman, D., and A. Tversky, 1974, «Judgment under Uncertainty: Heuristics and Biases», Science, 185, pp1124-1131.

113. Kahneman, D., and A. tversky, 1979, «Prospect Theory: An Analysis of Decision Under Risk», Econometrica, 47(2), pp263-291.

114. Kahneman, D., and A. Tversky, 1982, «Intuitive Predictions: Biases and Corrective Procedures».

160

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

115. Kandel, E., and ND. Pearson, 1995, «Differential Interpretation of Public Signals and Trade in Speculative Markets», Journal of Political Economy, 103(4), pp831- 872.

116. Kang, J-K., and RM. Stulz, 1997, «Why is there a home bias? An analysis of foreign portfolio equity ownership in Japan», Journal of Financial Economics, 46, pp3-28.

117. Karpoff, JM., 1987, «The relation between price changes and trading volume: A survey», Journal of Financial and Quantitative Analysis, 22, pp109-126.

118. Keynes, J.M., 1936, «The General Theory of Employment, Interest and Money», Macmillan Cambridge University Press, for Royal Economic Society.

119. Kidd, JB., 1970, «The utilization of subjective probabilities in production planning», Acta Psychological, 34, pp338-347.

120. Kim, KA .,and JR. Nofsinger, 2008, «Behavioral finance in Asia», Pacific-Basin Finance Journal, 16, pp 1-7.

121. Kirchler,E., and B. Maciejovsky, 2002, « Simultaneous over and under confidence: Evidence from Experimental Asset Markets», journal of risk and uncertainty, 25 (1), pp65-85.

122. Kleidon, A., 1986, «Variance bounds tests and stock price valuation models», Journal of Political Economy, 94, pp443-477.

123. Ko, K.J., and Z. Huang, 2007, « Arrogance can be a virtue: Overconfidence, information acquisition, and market efficiency», Journal of Financial Economics, 84, pp529-560.

124. Kyle, AS., and FA. Wang, 1997, «Speculation duoply with agreement to disagree: Can overconfidence survive the market test?», Journal of Finance, 52, pp2073-2090.

125. Lakonishok, J., A. Shleifer, and R. Vishny, 1992, «The impact of institutional trading on stock prices», Journal of Financial Economics, 32(1), pp23-44.

126. Lakonishok, J., A. Shleifer, and R. Vishny, 1994, «Contrarian investment, extrapolation, and risk», Journal of Finance, 48(5), pp1541-1578.

127. Lamoureux, CG., and WD. Lastrapes, 1990, «Heteroskedasticity in stock return data: Volume versus GARCH effects», Journal of Finance, 45, pp221-229.

161

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

128. Langer, E.J., 1975, «The illusion of control», Journal of Personality and Social Psychology, 32(2), pp311-328.

129. Langer,E.J and J. Roth, 1975, «Heads I win, tails it's chance: The illusion of control as function of the sequence of outcomes in a purely chance task», Journal of Personality and Social Psychology, 32(6), pp951-955.

130. Leroy, S., and R. Porter, 1981, «The present value reaction: Tests based on Variance Bounds», Econometrica, 49, pp555-574.

131. Lintner, J., 1965, «The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets», The Review of Economics and Statistics, 47(1), pp13-37.

132. Lo, AW., « Efficient Markets Hypothesis», Working Paper.

133. Lo, AW., 1991,«Long-Term Memory in Stock Market Prices», Econometrica, 59(5), pp1279-1313.

134. Lo, AW., 2004, «The Adaptive Markets Hypothesis: Market Efficiency From an Evolutionary Perspective», Working Paper.

135. Lo, AW., and AC. Mac Kinlay, 1988, « Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test», The Review of Financial Studies, 1(1), pp41-66.

136. Lucas, RE., 1978, « Asset Prices in An Exchange Economy », Econometrica, 46(6), pp1429-1445.

137. Lux, T., 1995, «Herd Behavior, Bubbles and Crashes», The Economic Journal, 105 (431), pp 881-896.

138. Mahajan, J., 1992, «The Overconfidence effect in Marketing Management Predictions», Journal of Marketing Research, 29, pp329-342.

139. Mangot, M., Paris 2004, « Les Comportements en bourse, 6 erreurs
psychologiques qui coûtent cher », Galino éditeur.

140. Mankiew, N.G., D. Romer, and M.D. Shapiro, 1985, « An unbiased Reexamination of Stock Market Volatility », Journal of Finance, 40, pp677-687.

162

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

141. Marimon, R., 1993, «Expectationally Driven Market Volatility: An Experimental Study», Journal of Economic Theory, 61(1), pp74-103.

142. Markowitz, H., 1952, «Portfolio Selection», Journal of Finance», 7(1), pp77-91.

143. Marsh, T., and R. Merton, 1986, «Dividend variability and variance bounds tests for the rationality of stock market prices», American Economic Review, 76, pp483- 498.

144. Marshall, BR., «How Quickly is Temporary Market Inefficiency Removed? », Massey University, Social Science Research Network.

145. Maug, E., and N. Naik, 1996, «Herding and Delegated Portfolio Management»', London Business School mimeo.

146. Mehra, R., and E.C. Prescott, 1985, «The Equity Premium: A Puzzle», Journal of Monetary Economics, 15(2), pp 145-161.

147. Mignon, V., 1998, « Marchés financiers et Modélisation des rentabilités boursières», Economica.

148. Morris, S., and H.S. shin, 1999, «Risk management with interdependent choice», Oxford Review of Economic policy, 15(3), pp653-686.

149. Mossin, J., 1966, «Equilibrium in a Capital Asset Market», Econometrica, 34(4), pp768-783.

150. Muth, JF., 1961, «Rational Expectations and the Theory of Price Movements», Econometrica, 29(3), pp315-335.

151. Naughton, T., 2002, «The winner is behavioral finance? , Journal of Financial
Services Marketing, 7(2), pp110-112.

152. Neale, M.A., and M.H. Bazerman, 1991, «Cognition and Rationality in negotiation», New York: The Free Press.

153. Nelson, D.B., 1991, «Conditional Heteroskedasticity in Asset Returns: A New Approach», Econometrica, 59(2), pp347-370.

154. Nofsinger, J., and R. Sias, 1999, «Herding and Feed back Trading by Institutional and Individual Investors», Journal of Finance, 54(6), pp2263-2295.

163

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

155. Odean, T., 1996, «Volume, Volatility, Price and Profit when all Traders are above Average», Working Paper series #266, University of California at Berkeley.

156. Odean, T., 1998a, «Volume, Volatility, Price, and Profit When All Traders Are Above Average», Journal of Finance, 53(6), pp1887-1934.

157. Odean, T., 1998b, «Are Investors Reluctant to Realize their Losses?» , Journal of Finance, 53, pp 1775-1798.

158. Odean, T., 1999, «Do Investors Trade Too Much?», American Economic Review, 89(5), pp1279-1298.

159. Oehler, A., and G. Chao, 2002, «Institutional Herding in Bond Markets», Unpublished Working Paper, Bamberg University, Germany.

160. Olsen, RA., 1998, «Behavioral Finance and Its Implications for Stock-Price Volatility», Financial Analysts Journal, 54(2), pp10-18.

161. Orléan, A., 1995, «Bayesian interactions and collective dynamics of opinion: herd behavior and mimetic contagion», Journal of Economic Behavior and Organization, 28(2), pp257-274.

162. Oskamp, S., 1965, «Overconfidence in case-study judgments», Journal of Consulting Psychology, 29(3), pp261-265.

163. Park, A., and H. Sabourian, 2006, «Herd Behavior in Efficient Financial Markets», Working Paper tepica-249, University of Toronto.

164. Persaud, A., 2000, «Sending the Herd off the Cliff Edge: The Disturbing Interaction Between Herding and Market-Sensitive Risk Management Practices», in Jacques de Larosière Essays on Global Finance, Washington.

165. Petty, RE, F. Gleicher and SM. Baker, 1991, «Multiple Roles for Affect in Persuasion, Emotion and Social Judgments «, Oxford: Pregamon Press, pp181-200.

166. Presson, PK., and VA. Benassi, 1996, «Illusion of Control: A meta-analytic review», Journal of Social Behavior and Personality, 11(3), pp493-510.

167. Reinganum, JF., 1981, « Market Structure and the diffusion of New technology», The Bell Journal of Economics.

164

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

168. Ricciardi, V., 2005, «A Research Starting Point for the New Scholar: A Unique Perspective of Behavioral Finance», Social Science Research Network.

169. Ricciardi, V., and HK. Simon, 2000, «What is Behavioral Finance?», Business, Education and Technology Journal, 2(1), pp26-34.

170. Ritter, JR., 2003, «Behavioral Finance», Pacific-Basin Finance Journal, 11, pp 429- 437.

171. Roll, R., 1992, «A Mean/Variance Analysis of tracking error», Journal of Portfolio Management, pp13-22.

172. Russo, J.E., and P.J.H. Schoemaker, 1992, «Managing overconfidence», Sloan Management Review, 33, pp7-17.

173. Samuelson, P., 1965, «Proof That Properly Anticipated Prices Fluctuate Randomly», Industrial Management Review, 6(2), pp41-49.

174. Saunders, EM ., 1993, «Stock Prices and Wall Street Weather», American Economic Review, 83(5), pp1337-1345.

175. Scharfstein, D.S., and J.C. Stein, 1990, «Herd Behavior and Investment«, American Economic Review, 80(3), pp465-479.

176. Scheinkman, J., and W. Xiong, 2003, «Overconfidence and Speculative bubbles», Journal of Political Economy, 111(6), p.1183.

177. Schwert, G.W., 1990, «Stock Volatility and The Crash of `87», The Review of Financial Studies, 3(1), pp 77-102.

178. Schwert, GW, 1989, «Why does stock market volatility change overtime?», Journal of Finance, 44, pp1115-1153

179. Sharpe, WF., 1964, «Capital Asset Prices: A theory of market equilibrium under conditions of risk», Journal of Finance, 19(3), pp425-442.

180. Shefrin, H., 2000, «Beyond Greed and Fear: Understanding Behavioral Finance and the Psychology of Investing», Boston MA: Harvard Business School Press.

181. Shefrin, H., 2002, «Beyond Greed and Fear: Understanding Behavioral Finance and the Psychology of Investing», Oxford University Press.

165

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

182. Shefrin, H., 2005, «A Behavioral Approach to Asset Pricing» Elsevier Academic Press.

183. Shefrin, H., and M. Statman, 1985, «the disposition to sell winners too early and ride losers too long: Theory and Evidence, Journal of Finance, 40(3), pp777-790.

184. Shiller, RJ., 1981, «Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?», American Economic Review, 71(3), pp421-436.

185. Shiller, RJ., 1989, « Market Volatility», Cambridge: MIT press.

186. Shiller, RJ., 1990, «Investor behavior in the October 1987 stock market crash», American Economic Review, 80, pp465-479.

187. Shiller, RJ., 1990, «Market Volatility and Investor Behavior», The American Economic Review, 80(2), pp58-62.

188. Shiller, RJ., 1999, «Human Behavior and the Efficiency of the Financial System», in Handbook of Macroeconomics, J. Taylor and M. Woodford( eds.), Amsterdam: Elsevier Science, pp 1305-1340.

189. Shiller, RJ., 2000, «Measuring Bubble Expectations and Investor Confidence», Journal of Psychology and Financial Markets, 1(1), pp49-60.

190. Shiller, RJ., 2002, «From Efficient Market Theory to Behavioral Finance», Cowles Foundation Discussion Paper No 1385.

191. Shleifer, A., 2000, «Inefficient Markets: An Introduction to Behavioral Finance», Oxford University Press.

192. Shleifer, A., and RW. Vishny, 1997, «The Limits of Arbitrage», Journal of Finance, 52(1), pp35-55.

193. Shleifer,A., and LH. Summes (1990), «The noise trader Approach to Finance», Journal of Economic Perspectives, 4(2), pp19-33.

194. Spieser, P., 2000, «information économique et marchés financiers «, Gestion, Politique générale, finance et marketing, Paris, Economica.

195. Staël Von Holstein and S. Carl-Axel, 1972, «Probabilistic forecasting: An experiment related to the stock market», Organizational Behavior and Human Performance, 8(1), pp139-158.

166

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

196. Statman, M., and S. Thorley, 1998, « Overconfidence and Trading volume», Working Paper, Santa Clara University.

197. Statman, M., S. Thorley, and K. Vorkink, 2006, «Investor Overconfidence and Trading Volume», Review of Financial Studies, 19(4), pp 1531-1565.

198. Stewart, P., 2006, «Behavioral Finance- Not To Be Ignored», Trusts and Estates, 145(6), pp46-50.

199. Stout, LA., 2003, «The Mechanisms of Market Inefficiency: An Introduction to the New Finance», Journal of Corporation Law, 28(4), p.635-669.

200. Suh, J., 2005, «Home Bias among Institutional Investors: A Study of The Economist Quarterly Portfolio Poll», Journal of Japanese and International Economies, 19(1), pp72-95.

201. Svenson, O., 1981, «Are we all less risky and more skilful than our fellow drivers?».

202. Tan, L.,TC. Chiang, JR. Mason and E. Nelling, 2008, «Herding behavior in Chinese markets: An examination of A and B shares», Pacific-Basin Finance Journal, 16, pp61-77.

203. Tao, L., 2003, «Overconfidence and Asset Prices», Duke University.

204. Taylor, S., and J.D. Brown, 1988, «Illusion and well-being: A social psychological perspective on Mental Health», Psychological Bulletin, 103(2), pp193-210.

205. Thaler, R., 1993, «Advances in behavioral finance», New York: Russell Sage Foundation.

206. Topol, R., 1991, « Bubbles and volatility of stock prices: effect of mimetic contagion», Economic Journal, 101, pp 786-800.

207. Trueman, B., 1994, «Analyst Forecasts and Herding Behavior», Review of Financial Studies, 7(1), pp97-124.

208. Utukus, SP., 2004, «Book Reviews», Journal of Pension Economics and Finance, 3(1), pp104-105.

209. Wagenaar, W., and G.B.Keren, 1986, «Does the expert know? The reliability of predictions and confidence ratings of experts», eds. E. Hollnagel, G. Maneini, and

167

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

D. Woods, Intelligent Decision Support in Process Environments, Berlin: Springer, pp 87-107.

210. Wang, A., 1997, «Overconfidence, Delegated Fund Management, and Survival», Working Paper, Columbia University.

211. Wang, H., 2004, «Dynamic volume-volatility relation», Working Paper.

212. Wang, J., 1993, «A model of intertemporal asset prices under asymmetric information», Review of Economic Studies, 60, pp249-282.

213. Weiner, R.J., and M.A. Green, 2004, «Do birds of a feather flock together? Speculator Herding in Derivatives Markets», Working Paper, George Washington University.

214. Welch, I., 1992, «Sequential sales, learning, and Cascades», the Journal of finance, 47(4), pp695-732.

215. Wermers, R., 1995, « Herding, Trade reversals, and the Cascading by Institutional Investors », University of Colorado mimeo.

216. Wermers, R., 1999, «Mutual Fund Herding and the Impact on Stock Prices», Journal of Finance, 54, pp581-622.

217. West, K.D, 1988, «Dividend innovations and stock price volatility», Econometrica, 56, pp37-62.

218. West, K.D., 1988, «Bubbles, Fads and Stock Price Volatility Tests: A Partial Evaluation», Journal of Finance, 43, pp639-656.

219. Wu, C-H., C-S. Wu, and VW. Liu, 2009, «The conservatism bias in an emerging stock market: Evidence from Taiwan», Pacific-Basin Finance Journal.

220. Zhou, RT., and RN. Lai, 2009, «Herding and Information Based Trading», Journal of Empirical Finance.

168

L'énigme de volatilité excessive des cours boursiers : Explication par la finance comportementale à

travers l'excès de confiance et le comportement grégaire.
« Validation empirique sur la BVMT »

précédent sommaire suivant










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard