WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

From pricing to rating structured credit products and vice-versa

( Télécharger le fichier original )
par Quentin Lintzer
Université Pierre et Marie Curie - Paris VI - Master 2 2007
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

2.4 Back to CSO tranche pricing: computing the expected portfolio loss

We shall now present three numerical methods in order to evaluate the expected tranche loss function E[M(t)], Vt E [0, T]. We stress the fact that the following methods apply within the framework of the one factor gaussian copula model to a finite heterogeneous portfolio (i.e. in terms of individual nominal weights and recovery rates) of obligors with deterministic recovery rates. We shall not detail the well known analytic results that can be derived from Large Homogeneous Portfolios (LHP).

2.4.1 Monte-Carlo simulations

The Monte-Carlo approach is probably the most straightforward method to price a CSO tranche fair premium:

1. Simulate N +1 independent standard gaussian variables (Z, Z1, ..ZN) by using, for instance, the Box-Müller transform, the polar method or even by drawing in the random variable Ö-1(U), where U is a uniform random variable; within the one factor gaussian copula model, the random vector (X1, .., XN) = ( /ñZ + /1 - ñZ1, .., /ñZ + /1 - ñZN) is therefore a gaussian vector with correlation matrix R.

2. Simulate (ô1, .., ôN) by drawing in the random vector

(Q-1

1 (Ö(X1)), .., Q-1

N (Ö(XN))

3. Evaluate the tranche loss function M(t), Vt E [0, T] along this loss scenario;

4. Repeat steps 1 & 2 and evaluate the tranche loss function along this new loss scenario;

5. Loop on step 4 until you feel comfortable (confidence interval or variance criteria) with the convergence of the empirical estimate of E(M(t)), Vt E [0, T];

6. Evaluate the CSO tranche fair premium detailed in equation (2.3). Such a simple anf flexible method comes at a high computation cost though, because one has to draw millions of random variables in the case of a reasonably large portfolio (between 100 and 200 obligors).

2.4.2 Evaluating the loss characteristic function

We first determine the expression of pj(t|Z), the cumulative distribution function of default time ôj, j = 1..N conditional on the common factor Z.

?j ? {1, .., N}, ?t ? [0, T], pj(t|Z) : = P(ôj = t|Z)

= P (Q6 1(Ö(Xj)) t|Z)

~ = PQ-1(Ö(vñZ + ñZj)) = t|Z)

= P (Zj G 4Ö-1 (Qj(t)) v ñZ |Z)

-1(Qj(t)) ? ?ñZ

v1 ? ñ )

- ñ

= Ö

We then derive the total loss characteristic function conditional on the common factor Z:

?u ? R, ÖL(t)(u|V ) : = E [exp(iuL(t))|Z]

= E [exp(iu ELnNn(t))|Z1

n=1

=

E [fl exp(iuLnNn(t)) | Z1

n=1

YN E [exp(iuLnNn(t))|Z]

n=1

YN [1 + pn(t|Z)(exp(iuLn) - 1)]

n=1

where we have used that (N1(t),..,NN(t)) are mutually independent conditionally

on the common factor Z.

We now integrate the conditional characteristic function over the common gaussian factor Z to retrieve the unconditional characteristic function ÖL(t):

+8

= IÖL(t)(u|z)dÖ(z)

?u ? R, ÖL(t)(u) : = E [ÖL(t)(u|Z)]

Once we have found the loss characteristic function, we can use the Fast Fourier Transform (FFT) to recover the loss distribution function itself, which we then plug into equation (2.3) to derive the CSO tranche fair premium.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Un démenti, si pauvre qu'il soit, rassure les sots et déroute les incrédules"   Talleyrand