1.2.4 Fractional Generalized Two-parameter
LebesgueStieltjes Integrals
Let 0 = ái = 1, i = 1, 2 be fixed. In what follows, we
assume that all functions considered belong to the space D(T), i.e., at every
point (x1, x2) ? T, they have limits in the four quadrants
Q++(x1, x2) = {(s1, s2) ? T : s1 = x1, s2 = x2} ,
Q+-(x1, x2) = {(s1, s2) ? T : s1 = x1, s2 < x2} ,
Q-+(x1, x2) = {(s1, s2) ? T : s1 < x1, s2 = x2} ,
Q--(x1, x2) = {(s1, s2) ? T : s1 < x1, s2 < x2} ;
furthermore,
f(x1, x2) lim f (s1, s2)
=
(s1,s2)?Q++?(x1,x2)
and, on the sides of the rectangle, the limits that can be
defined are supposed to exist and denoted as f(x1, b-2 ),
f(b-1 , x2), f(b-).Denote fa+(x)
= Äaf(x), x ? T, and fb-(x) := f(x) - f(x1,
b-2 ) - f(b-1 , x2) + f(b-),
a := (a1, a2), b := (b1, b2).
Definition 1.2.5. Let f, g : T -? R. The generalized
two-parameter LebesgueStieltjes integral of the function f w.r.t to the
function g is defined by
Z Z
f(x, y)dg(x, y) :=
K(D:1+ á2 a+)(x,
y)(D1Tá11?á2 gb-)(x, y)dxdy
+ I (Dá+ fa+ ) (x, a2) (D-
á1) (gb- (x, b2 ) - gb- (x, a2))
dx
a1
a b2
+ (DZ fa+2 ) (a1, y)(D1bá2) (gb-(b1
,y) - gb-(a1, y)) dy + f (a)Äag(b)
a2
Where
fa+1 (x, a2) = f(x, a2) - f(a),
fa+2 (a1, y) = f(a1, y) - f(a),
gb-1 (x, b-2 ) = g(x,
b-2 ) - g(b-), gb-1 (x, a2) = g(x,
a2) - g(b-1 , a2),
gb- 2(b-1 , y) = g(b-1 , y) -
g(b-), gb- 2(a1, y) = g(a1, y) - g(a1, b- 2 ).
1.2.4 Fractional Generalized Two-parameter Lebesgue-Stieltjes 18
Integrals
|