1.2 Two-parameter Fractional Brownian Motion
1.2.1 The Main Definition
For technical simplicity we consider two-parameter fBm (fBm
field) {BHt , t ? 1182+},
where t = (t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si
= ti, i = 1, 2.
1.2.2 Fractional Integrals and Fractional Derivatives of
14 Two-parameter Functions
Definition 1.2.1. The two-parameter process
{BHt ,t ? R2+} is called a
(normalized) two-parameter fBm with Hurst index H = (H1, H2) ?
(0,1)2, if it satisfies the assumptions:
(a) BH is a Gaussian field, Bt = 0 for t ?
?R2+;
(b) EBti = 0, EBt HBH = 1 11
4
(ti 2Hi si 2Hi ti si
i=1,2
Evidently, such a process has the modification with continuous
trajectories, and we will always consider such a modification. Moreover,
consider "two-parameter" increments:ÄsBHt
:= BHt - BHs1t2 - BHt1s2 + BHs for
s = t. Then they are stationary. Note, that for any fixed ti > 0
the process BH
(ti,.)
will be the fBm with Hurst index Hj, i = 1,2, j = 3 - i,
evidently, nonnormalized.
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions
For á = (á1, á2) denote (á) =
(á1)1(á2)
Definition 1.2.2. [12] Let f ? T := [a, b] := 11 [ai, bi], a =
(a1, a2),
i=1,2
b = (b1, b2). Forward and backward Reimann-Liouville fractional
integrals of orders 0 < ái < 1 are defined as
(Iaá_r12 f)(x) :=
(á) f (u) ?(x, u, 1 - á) du,
and
(Ir2 f)(x) := (á) f (u)
du
lx,b] ?(x, u, 1 - á) ,
correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11
[xi,bi],du = du1du2,
i=1,2 i=1,2
?(u, x, á) =| u1 - x1 |á1| u2 - x2
|á2, u, x ? [a, b].
Definition 1.2.3. Forward and backward fractional Liouville
derivatives of orders 0 < ái < 1 are defined as
2
(Dr2 f)(x) := (1 f (u) a) \ du
?x1?x2 ?(x, u, á)
and
?2 f (u) , du, x ? [a, b]
(Dr :á2 x)
:= (1 - á) ?x1?x2 i[x,b] ?(x, u, á)
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions 15
Definition 1.2.4. Forward fractional Marchaud derivatives of
orders 0 < ái < 1 are defined as
~ f Äu xdu
( 15r2 f)(x) :=(1 - á) f (x) +
?(x, u, á) á1á2 ./[a,x] ?(x, u,(
1 )+ á)
+ E
i=1,2,j=3-i
|
ái
|
áj
|
ix% f (x) - f (ui, x j)
dui) a% (xi - ui)1+á%
|
xj - aj
|
and the backward derivatives can be defined in a similar way
Let 1 = p = 8, the classes Iá1á2
+ (Lp(T )) := ~f|f = Iá1á2
a+ ?, ? ? Lp(T )~,
I
á1á2 - (Lp(T )) := ~f|f =
Iá1á2 b- ?, ?? Lp(T)1 Further we denote
Dá1á2
a+ := Ia-+ á1á2). Of course, we can
introduce the notion of fractional integrals and fractional derivatives on
R2 +. For exemple, the Riemann-Liouville left and Right sided
fractional integrals and derivatives on R2+ are defined
by the formulas
(If+ l1á2 f)(x) := (á) L8 f(t) ,x] cp(x , u,
á)dt
f (t)
(I21á2 f)(x) := (á) 48) ?(x,u, á) dt,
2
(cá
(á12)f)(x) = (DTá2 f)(x) :=
(1 - á) ? x1?x2
?I f(t)
(,,x] (p(x ,t, á) dt
and
2
f ft)
(I-(á1á2)f)(x)
(Dá1á2f)(x)
:= (1 - á) ?x1?x2 i[x,8) ?(x( t,
á)dt,
0 < ái < 1. Evidently, all these operators can be
expanded into the product
of the form Iá1á2
+ = Iá+ 1 ? Iá2 +, and so on. In what
follows we shall consider
only the case Hi ? (1/2, 1). Define the operator
YM#177; 1 H2 f :=
i=1,2
|
C(3)
H%Iá1á2 #177; f.
|
1.2.3 Hölder Properties of Two-parameter fBm
We fix á = (á1, á2), ái ? (0,1] and
let T = [a1, b1] × [a2, b2]. Let f the Riemann-Liouville fractional
integral of order á i.e
1
x1 Ix2
2 (x1 - t1) 1-- f (át1,t21 (x2 )-
t2)--á2
f)(x1, x2) = (al)F(a2) dt1dt2, (x1, x2) ? T
vx1)v.1ritc:E2) a1 . a
p
The space Ëá,p =
(Iaá+)(Lp(T)) is called the Liouville
space (or Besov space) and it becomes separable Banach space with respect to
the norm WEc+fllá,p = IIfII
Proposition 1.2.3.1. [6] For every á, â
Iá a+Iâ a+=
Iá+â
a+ ,
If f ? C2b (T) and f = 0 on ?1T = ([a1,b1]
× {b1}) ? ({a1} × [a2,b2])then the function
1 f x1 14+ f (x1, x2) = r2 ?2f(t1,t2) dt1dt2
(1 - á1)(1 - á2) L1 Ja2
?t1?t2 (x1 - t1)á1 (x2 - t2)á2
(1.4)
is the unique function from L8(T) such that
Iáa+Dáa+f
= f.
For a rectangle D = [s1, t1] × [s2, t2] ? T we define the
increment on D of the function f : T ? R by
f(D) = f(t1,t2) - f(t1, s2) - f(s1,t2) + f(s1, s2).
We denote by C[ai,bi],ái the space of all
ái-Hölder functions on [ai, bi] and
kfk[ai,bi],ái = sup
u6=v,ai=u,v=bi
|
|f(u) - f(v)|
(u - v)ái .
|
Also, we denote by CT,á1,á2 the space of all
(á1, á2)-Hölder functions on T, i.e., f ?
CT,á1,á2 if f is continuous,
If(a1, .)k[a2,b2],á2 < 8, f(., a2)k[a1,b1],á1
< 8
and
|f([u1, v1] × [u2, v2])|
< 8.
|u1 - v1|á1|u2 - v2|á2
kfkT,á1,á2 = sup
ui6=vi
Proposition 1.2.3.2. [4] Let 0 < â1 < á1,0
< â2 < á2 and p = 1. Then we have the continuous
inclusions Ëá,p ? Ëâ,p,
Ëá,p ?
Cá1-p-1,á2-p-1, Câ1,â2 ?
Ëã,p if áip > 1, âi > ãi > 0
1.2.4 Fractional Generalized Two-parameter
Lebesgue-Stieltjes Integrals 17
|