WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Stochastic differential equations involving the two- parameter fractional brownian motion

( Télécharger le fichier original )
par Iqbal HAMADA
Université Dr Moulay Tahar de SaàŻda Algérie - Master en probabiltés et applications 2011
  

précédent sommaire suivant

Extinction Rebellion

1.1.5 Fractional Integral and Fractional Derivative of Function

Let á > 0 (and in most cases below á < 1 though this is not obligatory). Define the Riemann-Liouville left- and right-sided fractional integrals on (a, b) of order á by

Z x

1

(Iá a+f)(x) := f(t)(x - t)á?1dt,

['(á) a

and

Z b

1

(Iá b_f)(x) := f(t)(t - x)á-1dt,

['(á) x

respectively.

We say that the function f ? D(Iá a+(b_)) (the symbol D(.) denotes the domain of the corresponding operator), if the respective integrals converge for almost all (a.a.) x ? (a, b) (with respect to (w.r.t.) Lebesgue measure).

The Riemann-Liouville left and Right sided fractional integrals on R are defined as

J x

1

(Iá +f)(x) := f(t)(x - t)á-1dt,

['(á) -8

and

J 8

1

(Iá -f)(x) := f(t)(t - x)á?1dt,

['(á) x

respectively.

The Riemann-Liouville left and Right sided fractional derivatives of f of order á on IR are defined by

(I

+ f)(x) = (Dá+f)(x) :=

Z x

1 d

f(t)(x - t)dt,

(1 - á) dx -8

and

(I

-f)(x) = (Dá-f)(x) :=

-1

Z 8

d f(t)(t - x)dt,

dx x

 

(1 - á)

respectively.

For f ? Iá#177;(Lp(118)) with p > 1 the Riemann-Liouville left and Right sided derivatives coincide with the Marchaud fractional derivatives

( 15á+f)(x) := (1 1 á) /L#177; (f(x) - f(x- y))y-á-1dy,

and

( fiáf)(x) := (1 1 á) L#177; (f(x) - f(x+ respectively.

Proposition 1.1.5.1. [4] Assume that f,g are C1([a, b])-function with f(a) = 0. Let á, â ? (0,1] be such that á+ â > 1 and let ä := {a = t0 < ... < tn = b} be a partition of [a, b] with the norm 1ä1 = max (tj+1 - tj). Then for

j

every 0 < å < á + â - 1 the following estimates hold:

~~~~

fb

f(t)dg(t) = C(á, â)1fk[a,b],álgk[a,b],â(b - a)1+å, (1.2)

a

~~Z~~~ a b

~

f (t)dg(t) - E f (ti)[g(ti+1) - g (ti)] ~= C(á, â)1f [a,b],á1g1[a,b],â(b - a)å.

~

i

(1.3)

précédent sommaire suivant






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway