WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Stochastic differential equations involving the two- parameter fractional brownian motion

( Télécharger le fichier original )
par Iqbal HAMADA
Université Dr Moulay Tahar de SaàŻda Algérie - Master en probabiltés et applications 2011
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.1.5 Fractional Integral and Fractional Derivative of Function

Let á > 0 (and in most cases below á < 1 though this is not obligatory). Define the Riemann-Liouville left- and right-sided fractional integrals on (a, b) of order á by

Z x

1

(Iá a+f)(x) := f(t)(x - t)á?1dt,

['(á) a

and

Z b

1

(Iá b_f)(x) := f(t)(t - x)á-1dt,

['(á) x

respectively.

We say that the function f ? D(Iá a+(b_)) (the symbol D(.) denotes the domain of the corresponding operator), if the respective integrals converge for almost all (a.a.) x ? (a, b) (with respect to (w.r.t.) Lebesgue measure).

The Riemann-Liouville left and Right sided fractional integrals on R are defined as

J x

1

(Iá +f)(x) := f(t)(x - t)á-1dt,

['(á) -8

and

J 8

1

(Iá -f)(x) := f(t)(t - x)á?1dt,

['(á) x

respectively.

The Riemann-Liouville left and Right sided fractional derivatives of f of order á on IR are defined by

(I

+ f)(x) = (Dá+f)(x) :=

Z x

1 d

f(t)(x - t)dt,

(1 - á) dx -8

and

(I

-f)(x) = (Dá-f)(x) :=

-1

Z 8

d f(t)(t - x)dt,

dx x

 

(1 - á)

respectively.

For f ? Iá#177;(Lp(118)) with p > 1 the Riemann-Liouville left and Right sided derivatives coincide with the Marchaud fractional derivatives

( 15á+f)(x) := (1 1 á) /L#177; (f(x) - f(x- y))y-á-1dy,

and

( fiáf)(x) := (1 1 á) L#177; (f(x) - f(x+ respectively.

Proposition 1.1.5.1. [4] Assume that f,g are C1([a, b])-function with f(a) = 0. Let á, â ? (0,1] be such that á+ â > 1 and let ä := {a = t0 < ... < tn = b} be a partition of [a, b] with the norm 1ä1 = max (tj+1 - tj). Then for

j

every 0 < å < á + â - 1 the following estimates hold:

~~~~

fb

f(t)dg(t) = C(á, â)1fk[a,b],álgk[a,b],â(b - a)1+å, (1.2)

a

~~Z~~~ a b

~

f (t)dg(t) - E f (ti)[g(ti+1) - g (ti)] ~= C(á, â)1f [a,b],á1g1[a,b],â(b - a)å.

~

i

(1.3)

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"L'ignorant affirme, le savant doute, le sage réfléchit"   Aristote