Chapter 2
Stochastic Integration with
Respect to Two-parameter
Fractional Brownian Motion
2.1 Pathwise Integration in Two-parameter Besov
Spaces
The next result gives an estimate of the Stieltjes integral
for smooth functions in terms of Hölder norms and represents the essential
step for extending the Stieltjes integral to Hölder functions of two
variables.
Proposition 2.1.1. Let ái + âi > 1, ái,
âi ? (0, 1], f, g ? C2(T) and let 0 < åi
< ái + âi - 1. Then
iab1 b2 1
a
2
~~
f(t1, t2)dg(t1, t2) ~~
~~~~
= C(ái, âi)1gkT,â1,â2
{1f1T,á1,á2(b1 - a1)á1+â1(b2 -
a2)á2+â2 +kf(., a2)1[a1,b1],á1(b1 -
a1)1+å1(b2 - a2)â2
+1f(a1, .)1[a2,b2],á2(b1 - a1)â1(b2 -
a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 -
a2)â2~
|
(2.1)
|
Moreover, for every partition A = (si, tj)i,j, a1 = s1
< ... < sn1 = b1, a2 = t1 < ... < tn2 = b2, 1A1 =
max(si+1 - si) + max(tj+1 - tj) , we have
i j
X 1
j
~~Z b1 Z b2 n1-1X n2-
f(si, tj)g ([si, si+1] × [tj, tj+1])
~~f(u1, u2)dg(u1, u2) -
~ a1 a2 i=1 =1
Z b1 Z b2 ~~~~ = (b1 -
a1)å1(b2 - a2)å2
f(t1, t2)dg(t1, t2) å1å2(å1)(å2)
a1 a2
~~~~
kf1 * h1k8
(b1 - a1)1+å1(b2 -
a2)1+å2
=
å1å2(å1)(å2) kf1k8kh1k8.
(2.2)
+ C(ái,âi)11fIIT,á1,á2
[11g1IT,â1,â211Ällá1+â1+á2+â2
(11g11T,â1,â2 .)1[a2,b2],â2)
1ÄMá1
+ (1g1T,â1,â2 + kg(.,
a2)k[a1,b1],â1) 1Ä1á2] .
Proof. Assume first that f = 0 on ?1T and define
h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2) (2.3)
-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2).
Then
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2 = ?2(f * h)(b1, b2) . ?t1?t2 ?t1?t2
a1 a2
Choose åi > 0, 0 < á0i
< ái, 0 < â0i < âi
withá0 i + â0 i = 1 +åi. By proposition 1.2.3.1
the function f1 = Daá+' f, h1 =
Daâ+' h are in L8 and
satisfy
I
á0
Iâ0 a+f1 = f, a+h1 = h.
(2.4) Then by proposition 1.2.3.1, (2.3) and (2.4) we have
Z b1 Z b2 Z b1 Z b2 f(t1,
t2)?2g(t1, t2)
f(t1, t2)dg(t1, t2) = dt1dt2
?t1?t2
a1 a2 a1 a2
?2(f * h)(b1,b2)
=
?2
?t1?t2
h i
Iá0
=
?t1?t2 ?2
=
a+f1 * Iâ0
a+h1 (b1, b2)
h i
Iá0+â0
a+ (f1 * h1) (b1, b2)
?t1?t2
?2 ~I1
= a+Iå a+(f1 * h1) (b1, b2)
?t1?t2
= Iå a+(f1 * h1)(b1, b2), such that
I1a+ = I(1,1) a+,
Iåa+ = Iå1,å2
a+
and then
Next, the integration by parts for functions of two variables
(see[14]) yields
(1 - á0(1 - á'2)
a2
(x1, x2) =
x1 1 r2 df ([t1,x1] × [t2, x2])
(x1 - t1)á 4 (x2 - t2)á 4
1 f ([t1,x1] × [t2, x2]) lim (1 -
á0(1 - á'2) t%?x% (x1 -
t1)á4 (x2 - t2)á4
lirn
x1 f ([t1, x1] [t2, )
dt
t2?x2 x21,
- ja1 (x1 toá, (x2
t2)j ál 2 1
- lim
f ([t1,x1]×[t2, x2]) dt2
ja2 (x1 - t1)á4 (x2 -
t2)á4
+áV1á02
|
x1 r2 f ([t1,x1] × [t2, x2]) dt1dt2
a1 } Ja2 (x1 -
t1)á4+1(x2 - t2)á2+1
|
r2 f ([t1,x1] × [t2, x2]) dt dt
(1 - áo(1 - a1 Ja2 (x1 -
t1)á1+1(x2 - t2)á2+1
i 2,
so that
2)kfkT,á1,á2
(1 - á0 1)(1 - á0
á0 1á0 2
x1 Ix2
Ja1 a
2
(2.6)
× (x1 - t1)á1?á01-1(x2 -
t2)á2?á02-1dt1dt2
= ckfkT,á1,á2(b1-
a1)á1?á01(b2 - a2)á2?á02.
Similary
kh1k8 = c1kgkT,â1,â2(b1-
a1)â1?â01(b2 - a2)â2?â02.
(2.7)
By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on
?1T. If f is not necessarily null on ?1T then we define
f(t1, t2) = f ([a1, t1] × [a2, t2]) .
Then f = 0 on ?1T and f, f have the same increments. Then we
have
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2
?t1?t2
a1 a2
Z b1 Z b2 Z b1 Z b2
f(t1, t2)?2g(t1, t2) f(a1,
t2)?2g(t1, t2)
= dt1dt2 + dt1dt2
?t1?t2 ?t1?t2
a1 a2 a1 a2
2
a
Z b1 Z b
+
a1 2
=
Z b1 Z b2
a1 a2
f(t1, a2)?2g(t1, t2) dt1dt2 + f(a1,
a2)g ([a1, b1] × [a2, b2]) ?t1?t2
Z b2 ~
f(t1, t2)?2g(t1, t2) ~?g(b1, t2) -
?g(a1, t2)
dt1dt2 + f(a1, t2) dt2
?t1?t2 ?t2 ?t2
a2
Z b1 ~?g(t1, b2) ~
- ?g(t1, a2)
+ f(t1, a2) dt1 + f(a1, a2)g ([a1, b1] × [a2, b2])
?t1 ?t1
a1 4
From the previous reasoning we have
~~Z b1 Z b2 ~~~~
~f(t1, t2)?2g(t1, t2)
~ dt1dt2
?t1?t2
a1 a2
= C(ái,
âi)kfkT,á1,á2kgkT,â1,â2(b1 -
a1)á1+â1(b2 - a2)á2+â2.
(2.9)
Next by using (1.2) we have
|J2| =
|
~~Z b2
~~
a2
|
r?g(b1, t2) ?g(a1, t2) 1 dt2
[f (a1, t2) - f(a1, a2)] ?t2 - ?t2
|
+ |f(a1, a2)g ([a1, b1] × [a2, b2])|
= C(ái, âi) kf(a1, .)1[a2,b2],á2
kg(b1, .) - g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2
+ |f(a1, a2)| 1g1T,â1,â2(b1 -
a1)â1(b2 - a2)â2,
so that
11J211ái,âi)11g1IT,â1,â2
{11f(a1,.)1[a2,b2],á2 (b1 -a1)â1(b2
-a2)1+å2 + |f (a1, a2)| (b1 - a1)â1(b2 -
a2)â2}.
(2.10)
Similarly
11J311 = C(ái, âi)11g11T,â1,â2{11f(.,
a2)k[a1,b1],á1 (b1 - a1)1+å1(b2 -
a2)â2 +|f(a1, a2)|(b1 - a1)â1(b2 -
a2)â2}.
(2.11)
Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we
have
Z b1 Z b2 X
IÄ = f(u1, u2)dg(u1, u2) - f(si, tj)g ([si, si+1] ×
[tj, tj+1])
a1 a2 i,j
X=
[f(u1, u2) - f(si,tj)] dg(u1,u2)
Z si+1 Z tj+1
i,j
X=
si tj
Z si+1 Z tj+1
si tj
[f(u1, u2) - f(u1, tj) - f(si, u2) + f(si,tj)] dg(u1,u2)
i,j
+E
Z si+1 Z tj+1
i,j
+E
si tj [f(u1, tj) - f(si,tj)] dg(u1, u2)
Z si+1 Z tj+1
i,j
= I1 Ä+
I2Ä + I3 Ä.
si tj [f(si, u2) - f(si,tj)] dg(u1, u2)
(2.12)
From (2.1) it follows that
|I1Ä| =
ClIfIlT,á1,á211g1IT,â1,â2E
i,j
|
(si+1 - si)á1+â1(tj+1 -
tj)á2+â2
|
(2.13)
|
=C1kfkT,á1,á2kgkT,â1,â2kÄMá1+â1+á2+â2-2.
Next define
Then (1.2),(1.3) imply
= E
= E
Z b1
i,j X ~?g(u1, tj+1)?g(u1,tj)] = f1(u1,
tj)du1
?u1 ?u1
a1j
Z si+1 Z tj+1 [f(u1, tj) - f(si, tj)]
?2g(u1, u2) du1du2
?u1?u2
i,j si tj
[f (u1 , tj) - f (si, tj)] ?u1
? g (u1 , tj+1) ?g(u1 1 tj)1
du1
?u
Z si+1
si
~~I2 ~~ = C Z b1 kf1(u1, .)k[a2,b2],á2 kg(u1,
.)k[a2,b2],â2 du1. (2.14)
Ä
a1
Since u1 ? [si, si+1) we have
kf1(u1, .) [a2,b2],á2 = 1f1T,á1,á2 (u1 -
si)á1 = IfkT,á1,á2 kÄká1
and
Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1
,gkT,â1,â2 + 1g(a1,.)1[a2,b2],â2 (2.15)
It follows by replacing in (2.14) that
~|I2 Ä| =
C1kfkT,á1,á2kÄká1 ~ kgkT,â1,â2 + kg(a1,
.)k[a2,b2],â2 . (2.16)
Similarly
~|I3 Ä| =
C1kfkT,á1,á2kÄká2 ~ kgkT,â1,â2 + kg(.,
a2)k[a1,b1],â1 . (2.17)
Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).
Next we define CT,á1,á2,8 the space
CT,á1,á2 endowed with the norm
kxkT,á1,á2,8 = 1x18+ sup
a1=t1=b1
kx(t1, .) [a2,b2],á2+ sup
a2=t2=b2
1x(., t2)1[a1,b1],á1+1xIT,á1,á2.
The space (CT,á1,á2,8, k.kT,á1,á2,8)
is a Banach space.
The convergence of Riemann-Stieltjes sums to the integral for
Hölder functions of one variable in shown in [[4],[15],[16]]. The
corresponding result for functions of two variables is given in the next
theorem.
Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] × [a2
- å0, b2 + å0], å0 > 0, and let
á1, á2, â1, â2 ? (0, 1] be such that
ái + âi > 1. If f ?CT0,á1,á2, g ?
CT0,â1,â2,
Z b1 Z b2
a1 a2
every sequence of partitions Än =
(sni ,tnj ), a1 = s0 < ... <
sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with
1Än1 ? 0, the Riemann-Stieltjes sums
then there exists a unique real number f(u, v)dg(u, v) such that
for
Sog= E
i
|
X~ × ~tn ~~ ,
f(sn i , tn j )g ~~sn i , sn j , tn
i+1 j+1
j
|
Z b1 Z b2
converge to f(u, v)dg(u, v). Moreover, the following estimate
holds:
a1 a2
/b1 f
a f (u, v)dg(u, v) f - a1)â1(b2 -
a2)â2.
1 a2
(2.18)
Proof. It is enough to prove that for every ä > 0
there exist ç > 0 such that for every two partitions (Äi)i=1,2,
ai = ui0 < ... < uim(i) = bi with kÄik <
ç we have
S ,f4 - = ä. (2.19)
Let J ? C°°(R2) be such that J =
0, J(x) = 0 if 114 = 1 and J(x)dx = 1
R2
and define Jå(x) = å-2 J
(x). Consider the regularizations of få,
gå of f,g. å
Recall that
få(x) =R Jå(x -
y)f(y)dy = f (x - åy)J(y)dy,
2
and for gå similarly (as usual f,g are extended
as 0 on R2 \ T0). It is well known that få ?
f,gå ? g uniformly on T. Also it is easily seen that
få ? CT,á1,á2, gå ?
CT,â1,â2.
Next we show that if 0 < á0i <
ái, 0 < â0 i < âi, then
få ? f in CT,á0 (2.20)
1,á0 2, gå ? g in
CT,â0 1,â0 2,
få(a1, .) ? f(a1, .) in
C[a2,b2],á02,
gå(a1, .) ? g(a1, .) in C[a2,b2],â0
2, (2.21)
få(., a2) ? f(., a2) in
C[a1,b1],á'1,
gå(.,a2) ? g(., a2) in
C[a1,b1],â01. (2.22)
We have
(få - f) ([s1,t1] × [s2, t2]) =
J(u,v){f([s1 - åu, t1 - åu] × [s2 - åv, t2 -
åv])
(0,1)
and then for every å, ä > 0,
sup
si6=ti
|(få - f) × [s2, t2])|
|s1 - t1|á01|s2 - t2|á02
= sup
|
{ | (få - f)([s1,t1]×
[s2,t2])|
, |si - ti| > ä, i = 1,2}
- t1|á4|s2 - t2|á4
|
+ sup {|(få - f)([s1,t1] ×
[s2,t])|
2 , |s1 - t1| > ä or |s2 - t2| > ä
|s1 - t1|á0 1|s2 - t2|á0
1
= sup {|f(u1, v1) - f (u2, v2)| , |ui- vi|< å, ? T0, i
= 1, 2}
äá1+á2
- f ([s1, t1] × [s2, t2])} dudv,
? 0 as å ? 0,ä ? 0.
+CU max(äá1-á'1, äá2-á2)
Similarly one prove(2.21),(2.22).
Next we choose 0 < á0i <
ái, 0 < â0 i < âi with
á0i + â0 i> 1. Then
from (2.20),(2.22) and (2.12) we obtain
~~~~~ - =f ,gå +
Ä1 Ä2 ,g - SfeSf,g -
Sfå,gå
Ä2 Ä2
+Saf-å;gå- fb1 b2
dgå Skfå - fådgå
d
b1 b2
a,
1
a
2
fa
1
a
2
=- S;t6,.å;gå + - S
kfå
+C (II fåIIT,á4,á4 + IlgålITAA) {(1 +
11Ä21e+â1+á4+%-2
+ + 11Ä21)á4 + (llÄ1ll +
11Ä21e}
=
f,g-
S;t6,.å;gå + -
gå
st
+C1 {(11Ä1ll +
11Ä211)á4+â1+á4+â?2 +
(11Ä1ll + 11Ä211)á4
+ (kÄ1k + kÄ21)á02o ?0,
as å ? 0 and then IÄiI ? 0. The previous computation
also shows that
lim b1b2 b1b2
fådgå =
f dg,
å?0
la
1
12
2
1
1
12
2
and this fact and(1.2) imply (2.18).
28 2.1 Pathwise Integration in Two-parameter Besov Spaces
|
|