WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Stochastic differential equations involving the two- parameter fractional brownian motion

( Télécharger le fichier original )
par Iqbal HAMADA
Université Dr Moulay Tahar de SaàŻda Algérie - Master en probabiltés et applications 2011
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Chapter 2

Stochastic Integration with

Respect to Two-parameter

Fractional Brownian Motion

2.1 Pathwise Integration in Two-parameter Besov Spaces

The next result gives an estimate of the Stieltjes integral for smooth functions in terms of Hölder norms and represents the essential step for extending the Stieltjes integral to Hölder functions of two variables.

Proposition 2.1.1. Let ái + âi > 1, ái, âi ? (0, 1], f, g ? C2(T) and let 0 < åi < ái + âi - 1. Then

iab1 b2
1

a

2

~~

f(t1, t2)dg(t1, t2) ~~

~~~~

= C(ái, âi)1gkT,â1,â2 {1f1T,á1,á2(b1 - a1)á1+â1(b2 - a2)á2+â2 +kf(., a2)1[a1,b1],á1(b1 - a1)1+å1(b2 - a2)â2

+1f(a1, .)1[a2,b2],á2(b1 - a1)â1(b2 - a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 - a2)â2~

(2.1)

Moreover, for every partition A = (si, tj)i,j, a1 = s1 < ... < sn1 = b1, a2 = t1 < ... < tn2 = b2, 1A1 = max(si+1 - si) + max(tj+1 - tj) , we have

i j

X 1

j

~~Z b1 Z b2 n1-1X n2-

f(si, tj)g ([si, si+1] × [tj, tj+1])

~~f(u1, u2)dg(u1, u2) -

~ a1 a2 i=1 =1

Z b1 Z b2 ~~~~ = (b1 - a1)å1(b2 - a2)å2

f(t1, t2)dg(t1, t2) å1å2(å1)(å2)

a1 a2

~~~~

kf1 * h1k8

(b1 - a1)1+å1(b2 - a2)1+å2

=

å1å2(å1)(å2) kf1k8kh1k8.

(2.2)

+ C(ái,âi)11fIIT,á1,á2 [11g1IT,â1,â211Ällá1+â1+á2+â2 (11g11T,â1,â2 .)1[a2,b2],â2) 1ÄMá1

+ (1g1T,â1,â2 + kg(., a2)k[a1,b1],â1) 1Ä1á2] .

Proof. Assume first that f = 0 on ?1T and define

h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2) (2.3)

-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2).

Then

Z b1 Z b2 f(t1, t2)?2g(t1, t2) dt1dt2 = ?2(f * h)(b1, b2) .
?t1?t2 ?t1?t2

a1 a2

Choose åi > 0, 0 < á0i < ái, 0 < â0i < âi withá0 i + â0 i = 1 +åi. By proposition 1.2.3.1 the function f1 = Daá+' f, h1 = Daâ+' h are in L8 and satisfy

I

á0 Iâ0
a+f1 = f, a+h1 = h. (2.4)
Then by proposition 1.2.3.1, (2.3) and (2.4) we have

Z b1 Z b2 Z b1 Z b2 f(t1, t2)?2g(t1, t2)

f(t1, t2)dg(t1, t2) = dt1dt2

?t1?t2

a1 a2 a1 a2

?2(f * h)(b1,b2)

=

?2

?t1?t2

h i

Iá0

=

?t1?t2
?2

=

a+f1 * Iâ0

a+h1 (b1, b2)

h i

Iá00

a+ (f1 * h1) (b1, b2)

?t1?t2

?2 ~I1

= a+Iå a+(f1 * h1) (b1, b2)

?t1?t2

= Iå a+(f1 * h1)(b1, b2), such that I1a+ = I(1,1) a+, Iåa+ = Iå1,å2

a+

and then

Next, the integration by parts for functions of two variables (see[14]) yields

(1 - á0(1 - á'2) a2

(x1, x2) =

x1 1 r2 df ([t1,x1] × [t2, x2])

(x1 - t1)á 4 (x2 - t2)á 4

1 f ([t1,x1] × [t2, x2]) lim (1 - á0(1 - á'2) t%?x% (x1 - t1)á4 (x2 - t2)á4

lirn

x1 f ([t1, x1] [t2, )

dt

t2?x2 x21,

- ja1 (x1 toá, (x2 t2)j ál 2 1

- lim

f ([t1,x1]×[t2, x2]) dt2 ja2 (x1 - t1)á4 (x2 - t2)á4

+áV1á02

x1 r2 f ([t1,x1] × [t2, x2]) dt1dt2

a1 }
Ja2 (x1 - t1)á4+1(x2 - t2)á2+1

r2 f ([t1,x1] × [t2, x2]) dt dt

(1 - áo(1 - a1 Ja2 (x1 - t1)á1+1(x2 - t2)á2+1

i 2,

so that

2)kfkT,á1,á2

(1 - á0 1)(1 - á0

á0 1á0 2

x1 Ix2

Ja1 a

2

(2.6)

× (x1 - t1)á1?á01-1(x2 - t2)á2?á02-1dt1dt2

= ckfkT,á1,á2(b1- a1)á1?á01(b2 - a2)á2?á02.

Similary

kh1k8 = c1kgkT,â1,â2(b1- a1)â1?â01(b2 - a2)â2?â02. (2.7)

By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on ?1T. If f is not necessarily null on ?1T then we define

f(t1, t2) = f ([a1, t1] × [a2, t2]) .

Then f = 0 on ?1T and f, f have the same increments. Then we have

Z b1 Z b2 f(t1, t2)?2g(t1, t2) dt1dt2

?t1?t2

a1 a2

Z b1 Z b2 Z b1 Z b2

f(t1, t2)?2g(t1, t2) f(a1, t2)?2g(t1, t2)

= dt1dt2 + dt1dt2

?t1?t2 ?t1?t2

a1 a2 a1 a2

2

a

Z b1 Z b

+

a1 2

=

Z b1 Z b2

a1 a2

f(t1, a2)?2g(t1, t2) dt1dt2 + f(a1, a2)g ([a1, b1] × [a2, b2]) ?t1?t2

Z b2 ~

f(t1, t2)?2g(t1, t2) ~?g(b1, t2) - ?g(a1, t2)

dt1dt2 + f(a1, t2) dt2

?t1?t2 ?t2 ?t2

a2

Z b1 ~?g(t1, b2) ~

- ?g(t1, a2)

+ f(t1, a2) dt1 + f(a1, a2)g ([a1, b1] × [a2, b2])

?t1 ?t1

a1
4

=

X
k=1

Jk.

(2.8)

From the previous reasoning we have

~~Z b1 Z b2 ~~~~

~f(t1, t2)?2g(t1, t2)

~ dt1dt2

?t1?t2

a1 a2

= C(ái, âi)kfkT,á1,á2kgkT,â1,â2(b1 - a1)á1+â1(b2 - a2)á2+â2. (2.9)

Next by using (1.2) we have

|J2| =

~~Z b2

~~

a2

r?g(b1, t2) ?g(a1, t2) 1 dt2

[f (a1, t2) - f(a1, a2)] ?t2 - ?t2

+ |f(a1, a2)g ([a1, b1] × [a2, b2])|

= C(ái, âi) kf(a1, .)1[a2,b2],á2 kg(b1, .) - g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2

+ |f(a1, a2)| 1g1T,â1,â2(b1 - a1)â1(b2 - a2)â2,

so that

11J211ái,âi)11g1IT,â1,â2 {11f(a1,.)1[a2,b2],á2 (b1 -a1)â1(b2 -a2)1+å2 + |f (a1, a2)| (b1 - a1)â1(b2 - a2)â2}.

(2.10)

Similarly

11J311 = C(ái, âi)11g11T,â1,â2{11f(., a2)k[a1,b1],á1 (b1 - a1)1+å1(b2 - a2)â2 +|f(a1, a2)|(b1 - a1)â1(b2 - a2)â2}.

(2.11)

Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we have

Z b1 Z b2 X

IÄ = f(u1, u2)dg(u1, u2) - f(si, tj)g ([si, si+1] × [tj, tj+1])

a1 a2 i,j

X=

[f(u1, u2) - f(si,tj)] dg(u1,u2)

Z si+1 Z tj+1

i,j

X=

si tj

Z si+1 Z tj+1

si tj

[f(u1, u2) - f(u1, tj) - f(si, u2) + f(si,tj)] dg(u1,u2)

i,j

+E

Z si+1 Z tj+1

i,j

+E

si tj [f(u1, tj) - f(si,tj)] dg(u1, u2)

Z si+1 Z tj+1

i,j

= I1 Ä+ I2Ä + I3 Ä.

si tj [f(si, u2) - f(si,tj)] dg(u1, u2)

(2.12)

From (2.1) it follows that

|I1Ä| = ClIfIlT,á1,á211g1IT,â1,â2E

i,j

(si+1 - si)á1+â1(tj+1 - tj)á2+â2

(2.13)

=C1kfkT,á1,á2kgkT,â1,â2kÄMá1+â1+á2+â2-2.

Next define

Then (1.2),(1.3) imply

= E

= E

Z b1

i,j X ~?g(u1, tj+1)?g(u1,tj)] = f1(u1, tj)du1

?u1 ?u1

a1j

Z si+1 Z tj+1 [f(u1, tj) - f(si, tj)] ?2g(u1, u2) du1du2

?u1?u2

i,j si tj

[f (u1 , tj) - f (si, tj)] ?u1

? g (u1 , tj+1) ?g(u1 1 tj)1 du1

?u

Z si+1

si

~~I2 ~~ = C Z b1 kf1(u1, .)k[a2,b2],á2 kg(u1, .)k[a2,b2],â2 du1. (2.14)

Ä

a1

Since u1 ? [si, si+1) we have

kf1(u1, .) [a2,b2],á2 = 1f1T,á1,á2 (u1 - si)á1 = IfkT,á1,á2 kÄká1

and

Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1 ,gkT,â1,â2 + 1g(a1,.)1[a2,b2],â2 (2.15)

It follows by replacing in (2.14) that

~|I2 Ä| = C1kfkT,á1,á2kÄká1 ~ kgkT,â1,â2 + kg(a1, .)k[a2,b2],â2 . (2.16)

Similarly

~|I3 Ä| = C1kfkT,á1,á2kÄká2 ~ kgkT,â1,â2 + kg(., a2)k[a1,b1],â1 . (2.17)

Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).

Next we define CT,á1,á2,8 the space CT,á1,á2 endowed with the norm

kxkT,á1,á2,8 = 1x18+ sup

a1=t1=b1

kx(t1, .) [a2,b2],á2+ sup

a2=t2=b2

1x(., t2)1[a1,b1],á1+1xIT,á1,á2.

The space (CT,á1,á2,8, k.kT,á1,á2,8) is a Banach space.

The convergence of Riemann-Stieltjes sums to the integral for Hölder functions of one variable in shown in [[4],[15],[16]]. The corresponding result for functions of two variables is given in the next theorem.

Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] × [a2 - å0, b2 + å0], å0 > 0, and let

á1, á2, â1, â2 ? (0, 1] be such that ái + âi > 1. If f ?CT0,á1,á2, g ? CT0,â1,â2,

Z b1 Z b2

a1 a2

every sequence of partitions Än = (sni ,tnj ), a1 = s0 < ... < sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with 1Än1 ? 0, the Riemann-Stieltjes sums

then there exists a unique real number f(u, v)dg(u, v) such that for

Sog= E

i

X~ × ~tn ~~ ,

f(sn i , tn j )g ~~sn i , sn j , tn

i+1 j+1

j

Z b1 Z b2

converge to f(u, v)dg(u, v). Moreover, the following estimate holds:

a1 a2

/b1 f

a f (u, v)dg(u, v) f - a1)â1(b2 - a2)â2.

1 a2

(2.18)

Proof. It is enough to prove that for every ä > 0 there exist ç > 0 such that for every two partitions (Äi)i=1,2, ai = ui0 < ... < uim(i) = bi with kÄik < ç we have

S ,f4 - = ä. (2.19)

Let J ? C°°(R2) be such that J = 0, J(x) = 0 if 114 = 1 and J(x)dx = 1

R2

and define Jå(x) = å-2 J (x). Consider the regularizations of få, gå of f,g. å

Recall that

få(x) =R Jå(x - y)f(y)dy = f (x - åy)J(y)dy,

2

and for gå similarly (as usual f,g are extended as 0 on R2 \ T0). It is well known that få ? f,gå ? g uniformly on T. Also it is easily seen that

få ? CT,á1,á2, gå ? CT,â1,â2.

Next we show that if 0 < á0i < ái, 0 < â0 i < âi, then

få ? f in CT,á0 (2.20)

1,á0 2, gå ? g in CT,â0 1,â0 2,

få(a1, .) ? f(a1, .) in C[a2,b2],á02,

gå(a1, .) ? g(a1, .) in C[a2,b2],â0 2, (2.21)

få(., a2) ? f(., a2) in C[a1,b1],á'1,

gå(.,a2) ? g(., a2) in C[a1,b1],â01. (2.22)

We have

(få - f) ([s1,t1] × [s2, t2]) = J(u,v){f([s1 - åu, t1 - åu] × [s2 - åv, t2 - åv])

(0,1)

and then for every å, ä > 0,

sup

si6=ti

|(få - f) × [s2, t2])|

|s1 - t1|á01|s2 - t2|á02

= sup

{ | (få - f)([s1,t1]× [s2,t2])|

, |si - ti| > ä, i = 1,2}

- t1|á4|s2 - t2|á4

+ sup {|(få - f)([s1,t1] × [s2,t])|

2 , |s1 - t1| > ä or |s2 - t2| > ä

|s1 - t1|á0 1|s2 - t2|á0

1

= sup {|f(u1, v1) - f (u2, v2)| , |ui- vi|< å, ? T0, i = 1, 2}

äá1+á2

- f ([s1, t1] × [s2, t2])} dudv,

? 0 as å ? 0,ä ? 0.

+CU max(äá1-á'1, äá2-á2)

Similarly one prove(2.21),(2.22).

Next we choose 0 < á0i < ái, 0 < â0 i < âi with á0i + â0 i> 1. Then from (2.20),(2.22) and (2.12) we obtain

~~~~~ - =f ,gå +

Ä1 Ä2 ,g - SfeSf,g - Sfå,gå

Ä2 Ä2

+Saf-å;gå- fb1 b2

dgå Skfå - fådgå

d

b1 b2

a,

1

a

2

fa

1

a

2

=- S;t6,.å; + - S kfå

+C (II fåIIT,á4,á4 + IlgålITAA) {(1 + 11Ä21e+â1+á4+%-2

+ + 11Ä21)á4 + (llÄ1ll + 11Ä21e}

=

f,g- S;t6,.å; + - gå

st

+C1 {(11Ä1ll + 11Ä211)á4+â1+á4+â?2 + (11Ä1ll + 11Ä211)á4

+ (kÄ1k + kÄ21)á02o ?0,

as å ? 0 and then IÄiI ? 0. The previous computation also shows that

lim b1b2 b1b2

fådgå =

f dg,

å?0

la

1

12

2

1

1

12

2

and this fact and(1.2) imply (2.18).

28 2.1 Pathwise Integration in Two-parameter Besov Spaces

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Soit réservé sans ostentation pour éviter de t'attirer l'incompréhension haineuse des ignorants"   Pythagore