WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Chapter 2

Local Existence

Abstract

Our goal in this chapter is to study the local existence ( local well-possedness) of the problem (P), for u in C ([0, T] ,H1 0(1)). For this purpose we consider, first the related problem for u fixed in C ([0,T] ,H1 0(1))

8

<>>>>>>>>>>> >

>>>>>>>>>>>>:

vtt - Lvt - Lv + f 0 t g(t - s)Lv(s, x)ds

+ jvtjm~2 vt = jujp~2 u, x 2 1, t > 0

, (2.1)

v (0,x) = u0 (x), vt (0,x) = u1 (x), x 2 1

v (t,x) = 0, x 2 [', t > 0

and we will prove the local existence of this problem by using the Faedo-Galerkin method. Then, by using the well-known contraction mapping theorem, we can show the local existence of (P). Our techniques of proof follows carefully the techniques due to Georgiev and Todorova [14], with necessary modifications imposed by the nature of our problem. The first step of our proof is the choice of the space where the local solution exists. The minimal requirement for this space is that u(t, x) be time continuous. The weak space satisfying the above requirement is C ([0, T] , H), where H = H1 0(1) x H1 0(1) is the natural energy space for (P).

2.1 Local Existence Result

In order to prove our local existence results, let us introduce the following space

YT =

{

u : u E C ([0, 71] , 11(1(Q)) ,

ut E C([0,7] ,11(1-(Q)) n Lm([0, T] x Q)

}


· (2.2)

Our main result in this chapter reads as follows:

Theorem 2.1.1 Let (uo, ui) E (11j(Q))2 be given. Suppose that m > 2, p > 2 be such that

--

max {m, p} < 2 (n -- 2 1) ' n > 3. (2.3)

Then, under the conditions (C1) and (G2), the problem (P) has a unique local solution u(t, x) E YT, for T small enough.

The proof of theorem 2.1.1 will be established through several lemmas. The presence of the term IuIP-2 u in the right hand side of our problem (P) , gives us negative values of the energy. For this purpose we fixed u E C ([0, T] , 1/(1-(Q)) in the right hand side of (P) and we will prove that our problem (2.1) , admits a solution.

Lemma 2.1.1 ([14], Theorem 2.1) Let (uo, 74) E (1/(1-(Q))2, assume that m > 2, p > 2 and (2.3) holds. Then, under the conditions (C1) and (G2), there exists a unique weak solution v E YT to the problem (2.1), for any u E C ([0, T] ,11(1-(Q)) given.

The proof of the above Lemma follows the techniques due to Lions [26], in order to deal with the convergence of the non linear terms in our problem, we must take first our initial data (uo, u1) in a high regularity (that is, uo E H2(Q) n 1/(1-(Q), and ui E 1/(1-(Q) n L2(m-1)(Q)).

Lemma 2.1.2 ([26], Theorem 3.1) Let u E C ([0, T] ,11j(Q)). Suppose that

uo E H2(Q) n HO(Q), (2.4)

ui E HI((Q) n L2(m-1)(Q), (2.5)

assume further that m > 2, p > 2. Then, under the conditions (G1) and (G2) there exists a unique solution v of the problem (2.1) such that

v E L°° ([0, T] , H2(Q) n 1/(1-(Q)) , (2.6)

vt 2 L°° ([0, T] , HO(Q)) , (2.7)

vtt 2 L°° ([0, 71], L2(Q)) , (2.8)

vt 2 Lm" ([0, T] x (Q)) - (2.9)

The following technical Lemma will play an important role in the sequel.

Lemma 2.1.3 For any v 2 C1 (0, T, H2(Q)) we have

I i

st 0

dt[

t

1 d 1 d

g(t -- s)Av(s).71(t)dsdx = dt (g o Vv) (t) 2 1 g(s) I 1Vv(t)12 dxds

2

n

0

2 1 (g' o VV) (t) + 2 g(t)

1 I

n

1Vv(t)12 dxds.

where (g o u)(t) =

t

I

0

g(t -- s ) 1 1u(s) -- u(t)12 dxds.

The proof of this result is given in [31], for the reader's convenience we repeat the steps here. Proof. It's not hard to see

I i

st 0

g(t -- s)Av(s).71(t)dsdx = --

t

I

0

g(t -- s) .1 V 7; (t).Vv(s)dxds

= -

t

I

0

g(t -- s) I Ve(t).[Vv(s) -- V v(t)] dxds

t

I

0

g(t -- s) .1 Ve(t).Vv(t)dxds.

Consequently,

I .ti

st 0

g(t -- s)Av(s).vV)dsdx = 21

t

I

0

g(t -- s) ddt I

n

1V v(s) -- Vv(t)12 dxds

t

I

0

g(s) dt 2

n

d 1 1 1V v(t) 12 dx) ds

which implies,

I Zt

~ 0

2 1 d

g(t - s).6,v(s).71(t)dsdx = 2 I g(t - s) I 1V v(s) - Vv(t)12 dads

dt

0 ~

?

1

2

d
dt

2 Zt

4 0

 

3

Z

g(s) jrv(t)j2 dxds 5

~

?

1

2

Zt

0

g'(t -- s) I

1Vv(s) - Vv(t)12 dads

+

1 gm I

~

1Vv(t)12 dads.

8

<> >

>>:

~~wj= AjWi

wi = 0 on['

j = 1, ..., in Q. (2.10)

 
 

This completes the proof. Proof of Lemma 2.1.2. Existence:

 

Our main tool is the Faedo-Galerkin's method, which consist to construct approximations of the solutions, then we obtain a prior estimates necessary to guarantee the convergence of approximations. Our proof is organized as follows. In the first step, we define an approach problem in bounded dimension space Vn which having unique solution vn and in the second step we derive the various a priori estimates. In the third step we will pass to the limit of the approximations by using the compactness of some embedding in the Sobolev spaces.

1. Approach solution:

Let V = 1/(1-(Q) n H2(Q) the separable Hilbert space. Then there exists a family of subspaces MI such that

i) c (dimVn < 0o), Vn 2

ii) Vn -p V, such that, there exist a dense subspace in V and for all v 2 V, we can get sequence {vn}nEN 2 Vn, and vn --p v in V.

iii) Vn C Vn+1 and UnEN*Vn = HO(2) n H2(l).

For every n > 1, let Vn = Span {wi,
·
·
·,wn} , where {wi}, 1 < i < n, is the orthogonal complete system of eigenfunctions of --A such that = 1, wi 2 H2(1) n L2(m-1)(1) for all j = 1, n. Denote by {Ai} the related eigenvalues, where wi are solutions of the following initial boundary value problem

According to (iii) , we can choose vno, vni E [wi,
·
·., wn] such that

vno ~ Xn ainwi --! uo in 1/(1-(Q) n H2(S), (2.11)

j=1

vn1 ~ Xn Oinwi --! ui in 1/(1)-(Q) n L2(m-1)(Q), (2.12)

j=1

solves the problem

8

<>>>>>>>>>>>>>>> >

>>>>>>>>>>>>>>>>:

where

ajn =f~uowidx

Oin -- R ~uiwidx.

We seek n functions cprii, nE C2 [0, , such that

vn(t) = Xn cp7(t)wi(x), (2.13)

j=1

f ((v'r(t) -- Av'n(t) -- Avn(t))ndx

~

+ f f g(t -- s)Avn(s)ds + 1v'n(t)1n-2 (t)) ndx

; (2.14)

~ 0

=f

~

1u(t)1P-2 u(t)ndx

vn (0) = vno, vn' (0) = vni

where the prime "'" denotes the derivative with respect to t. For every' E vn and t > 0. Taking ~ = wj, in (2.14) yields the following Cauchy problem for a ordinary differential equation with unknown cprii:

(,07(0) = f uowi, (,03'ri(0) = f u1wj; = 1, ..., n

~ ~

(prim (t) +viin(t) + (4(0 + A

~~m2 '0n

+ ~~'0h j (t) j (t) = i(t)

8

<>>>>>>>> >

>>>>>>>>>:

g(t -- s)(prii(s)ds

Rt

0

; (2.15)

for all j, where

3(t) = I

1U(t)119-2 U(t)Wi E C [0, 1] .

By using the Caratheodory theorem for an ordinary differential equation, we deduce that, the above Cauchy problem yields a unique global solution cprii 2 H3 [0, T] , and by using the embedding Hm [0, T] y Cm-1 [0, T], we deduce that the solution (pr.; 2 C2 [0, T]. In turn, this gives a unique vn, defined by (2.13) and satisfying (2.14).

2. The a priori estimates:

The next estimate prove that the energy of the problem (2.1) is bounded and by using a result in [9], we conclude that; the maximal time tn, of existence of (2.15) can be extended to T.

The first a priori estimate:

Substituting n = v'n(t) into (2.14), we obtain

I

Zv00 n(t)v0 n(t)dx ~

~

en(t)en(t)dx -- f

~

Avn(t)en(t)dx

+f

~

Zt

0

g(t -- s)Avn(s)dsen(t)dx + f

~

I n(t)1m-2 (t)en(t)dX (2.16)

= I

~

f(u)en(t)dx.

for every n > 1, where f(u) = lu(t)1P-2 u(t), Since the following mapping

L2(Q) L2(Q)

uIUIP-2 u

is continues, we deduce that,

juIP-2 u 2 ([0, T] , L2(Q)) .

+

1

2

d
dt

2 Zt

4 0

So, f 2 111 ([0, T] , H1(Q)). Consequently, by using the Lemma 2.1.3 and (G1) we get easily 1 d2 dt Ilvn,(0112 + 11V vn(t)112 + 2dt 11V vn(t)11

3 0 1

Z Zt

1 d

g(t ~ s) jrvn(s) ~ rvn(t)j2 dxds 5 ~ @krvn(t)k2 g(s):ds A

0

2

2 dt

~

~

1

2

Zt

0

g'(t -- s) I

vn(s) -- Vvn(t)12 dxds +12g(t)1Vvn(t)k22 +1en(t)kmm

= I

~

f(u).en(t)dx:

Therefore, we obtain

d
dt

En(t) -- f f(u):v0 n(t)dx + krv0 n(t)k2 2 + kv0 n(t)km m

1

= 2(g' o Vvn)(t) -- 1 g (t) 11V vn(t)g ,

where

8

<

1

En(t) = 2 :

0 1Men(t)112 + 1 -- I 9(s)ds 11V vn(t)g + (g 0 V v n) MI ,

0t

is the functional energy associated to the problem (2.1). It's clear by using (G2), that

dt nE (t) -- I

n

f (u).v'n(t)dx + 11V en(t)112 + Ilvn(t)Eni < 0, Vt > 0.

Which implies, by using Young's inequality, for all 8 > 0

d
dt

En(t)+11Ven(t)112+11en(t)k: < 416. Ilf(u)g +6.11en(t)1122. (2.17)

Integrating (2.17) over [0, t] , (t < T), we obtain

En(t) +

t

I 0

11V en(s)1122 ds +

t

I 0

11 vn (s) kC ds

<

1
48

T

I 0

11 f(u) g ds + 8

T

I 0

Men(s)112 ds + 2 (Iluing + 11Vuong)

Since f 2 H1(0, T, I(1-(Q)), we deduce

En(t) +

t

I 0

11V en(s)1122 ds +

t

I 0

Men(s)kri ds < CT (Mu ing + 11V u °mg) , (2.18)

for, 8 small enough and every n > 1, where CT > 0 is positive constant independent of Ti. Then, by the definition of En(t) and by using (2.11) , (2.12), we get

(

o

t

117/n(0g + 1 -- I s(s)ds 11V vn(t)g + (g 0 V vn)(t) KT, (2.19)

t

I 0

and

Men(s)km7 ds < KT, (2.20)

and

Zt

0

1Vv0n(s)122 ds < KT, (2.21)

where KT = CT (11u1n1122 + uOn1122) , by (2.19), we get to = T, Vn.

However, the insufficient regularity of the nonlinear operator, lvtlm-2 vt, with the presence of the viscoelastic term and strong damping, we must prove in the next a prior estimates that, the family of approximations vn defined in (2.13) is compact in the strong topology and by using compactness of the embedding H1([0, T] , H1(Q)) y L2([0, T] , L2(Q)), we can extract a subsequence of vn denoted also by v, such that v', converges strongly in L2([0, T] , L2(Q)). To do this, it's suffices to prove

''

that vn is bounded in L°([0, T] , Hj(Q)) and vn is bounded in L'([0, T] , L2(Q)), then by using Aubin-Lions Lemma, our conclusion holds.

The second a priori estimate:

Substituting n = wi in (2.14) and taking -Awl = Ajwi, multiplying by wi'n(t) and summing up the product result with respect to j, we get by Green's formula.

Z

vvn».vvrcdx + I

~

Aen.Aendx + f

~

Avn.Avn' dx - I

~

Zt

0

g(t - s)Avn.Av0ndsdx

aaxi n -2 n\ aav:ni dx + E./ (17/1m )

j=1 ~

n

(2.22)

=

4(m - 1)

m2

En I (axi

a oencv env dx.

i=1 ~

 
 

= I

~

Vf(u).Vv0ndx.

As in [26], we have

En I ° 1m-2 avn'

dx

j Oxi n Oxi

i=1 ~

= (m - 1)

En , 2

I a 1m2 2 tjvn) dx

Oxi n axi (2.23)

i=1 ~

Also, the fourth term in the left hand side of (2.22) can be written as follows

I Zt

st 0

g(t -- s)Avn.Aendsdx = -- 21 g(t) Ilovnll2 + 21 (g' o Avn)

~

1

2

d
dt

8

<

:

(g o Avn) -- 1Avnk22

Zt

0

g(s)ds

9

=

;

. (2.24)

Therefore, (2.22) becomes

2 0 1 3

1 d

2 dt

Zt

0

4krv0 nk2 2 + (g ~ ~vn) + k~vnk2 @1 ~ g(s)ds A 5

2

r (1v/711 2 v' )

aXi m 2 2

n) dx (2.25)

t=i

~

4(m -- 1)

m2

+

+ 1164112 + 2g (t) Ilovnll2 -- 2(g' 0 Avn)

-1

~

Vf(u).Vv0ndx.

Let us define the energy term

Kn(t) = 2 [11Ven112 + (g o Avn) + 1lAvng (1 -- I g(s)ds)1 (2.26)

Then, it's clear that (2.25) takes the form

dtKn(t) -- I

V f (u).Vv'ndx + IlAv'n1122

2

(lenl m2 -2 en)) dx

#177; En I (axi

i=1

(2.27)

= ~

2

(g (t) 11 Av ng 2

) + (g' 0 Avn).

Using (G1) , (G2) and integrating (2.27) over [0, t] , we obtain

Km(t) +

Xn

i=i

Zt

0

I

t

(aaxi (lenl m2 2 en) 2 dxds + I

0

16v0n122 ds

~

Z

ZT

0

vf(u).vv0ndxds + 21 (1Ivvin + IAvong). (2.28)

Obviously, by using Young's inequality, we get

ZT

0

Z

Vf(u).Vendxds < 416.

ZT

0

1Vf(u)12 2ds + ~

ZT

0

IovnI22 ds.

Inserting the above estimate into (2.28), to get

Kn(t) +

Xn
i=i

Zt

0

Z

~ @ ~ 2 Zt

m2

jv0 nj 2 v0 dxds +

n

@xi

0

.641122 ds

< CT(1Vvink22 + 11.Avong)
·

Thus,

Km(t) +

Xn
i=i

Zt

0

Z

~ @ ~ 2 Zt

m2

jv0 nj 2 v0 dxds +

n

@xi

0

1.4k22 ds < CT,

for, 8 small enough and every n > 1, where CT > 0 is positive constant independent of Ti. Therefore, this equivalent by the definition of Kn(t)

0

0 IlVen112 + (g o Avn) + 11Avng 1 -- I g(s)ds)< CT, (2.29)

and

and

Xn
i=i

Zt

0

Z

( @~ 2

m2

jv0 nj 2 v0 dxds ~ CT ; (2.30)

n

Zt

0

axi

.64122 ds < CT. (2.31)

Then, from (2.29), (2.30) and (2.31) , we conclude

en is bounded in L'([0, T] , 1l((Q)), (2.32)

vn is bounded in L'([0, T ] , H2(Q)), (2.33)

a (Iv l m-2 en) is bounded in L2([0, , L2 (Q)) , i = 1, n. (2.34)

Oxi n 2

The third a priori estimate: It's clear that

d
dt

2 Zt

4 0

0

t

1 g(t -- s)Avn(s)ds = g(0)Avn + I g(t -- s)Avn(s)ds. (2.35)

Performing an integration by parts in (2.35) we find that

d
dt

2 Zt

4 0

g(t -- s)Avn(s)ds = g (t) Aura) +

1I g(t -- s)Avas)ds. (2.36)

0 t

Now, returning to (2.14), differentiating throughout with respect to t, and using (2.36), we obtain

I

(erat) -- Av00n(t) -- Aeri(t)) ndx

+I

n

0 Zt

@0

)g(t -- s)Aeri(s)ds + g(t)Aurio + (m -- 1)(leri(t)r-2 vat)) ndx

= I

~

(f(u))')ndx, (2.37)

where, (f (u))' = 0 at f

. By substitution of n = v00h(t) in (2.37), yields

I

vZ(t)vat)dx -- I Avat)4(t)dx -- I

~ n

Aer(t)4(t)dx

+I

n

0
@

t

I 0

)g(t -- s)Aeri(s)ds + g (t)Aurio v00n(t)dx

+(m - 1) I len(t)1m-2 v00n(t)v00n(t)dx (2.38)

=

I

(f(u))' v00n(t)dx.

The fourth term in the left hand side of (2.38) can be analyzed as follows. It's clear that Lemma 2.1.3 implies

fi st 0

g(t -- s)Aeri(s).vat)dsdx = --1

n

t

I 0

g(t -- s)Ver(s).Vv00n(t)dsdx

1 d 1 d

= dt (g ~ rv0 n) (t) ~

2 2 dt

t

I 0

g(s) 1Ver(t)122 ds

(2.39)

1 1

2 (g o Ver) (t) + 2g(t) 1Ver(t)122 :

Also,

Z

(m ~ 1)hjv0 n(t)jm~2 v00 n(t); v00 n(t)i = 4(m ~ 1)

m2

~

~ @ ~ 2

m2

jv0 nj 2 v0 n(t) dx: (2.40)

@t

Inserting (2.39) and (2.40) into (2.38), we obtain

8

<

1 d d

dt kv00 nk2 2 + krv00 nk2 2 + 1 dt d krv0 nk2 2 + 1

2 2 2 dt :

(g o Vert) (t) -- IlVen1122

Zt

0

g(s)ds

9

=

;

+

4(m -- 1)f

m2

~

(at a (17/1 m2 2 en(t) ))2

dx + (g (t)Auno) I

v00n(t)dx (2.41)

= I

~

(f(u))' v00n(t)dx + 21 (g' o Ven) (t) -- 12g(t) IVvnI22 :

Let us denote by

8

<111 n(t) _-- 21 :

1174112 + + (g 0 Vv'n) (t) + (1 --

Zt

0

g(s)ds)11Vv'n1122

9

=

;

: (2.42)

2

(at a (17/1 m2 2 en(t) )) dxds

4(m ~ 1) ~n(t) +

Zt Z

0

m2

+1

0

krv00 nk2 2 ds + (g(0)~un0)

Zt

0

Z

v00n(s)dxds

1 2 + 1

~ 2 kv00 n0k2 2 + 2 1 krvn1k2 4

ZT

0

~ ~(f(u))0~~2 2 ds + ~

ZT

0

1141122 ds.

We obtain, from (2.41) , (G2) that

dtT n(t) I

Z

(f(u))' .vat)dx + 4(rn ~1)

m2

~

2

(at a (17/1 m2 2 en(t) J) dx

Z+ krv00 nk2 2 + (g(0)~un0)

~

v00 n(t)dx

1 1

= 2 (g0 ~ rv0 n) (t) ~ 2g(t) krv0 n(t)k2 2

< 0.

Integration the above estimate over [0; t], we conclude

Then, for 8 small enough, we deduce

--

111n(t) +

4(m 2 1)
m

t

I

0

I

( a ( len 1 m-2 2 VI ) ) 2 dxds

at n

t

+I

0

1Vv00n122 ds + (g(0)Auno)

t

I

0

I

v00ndxds (2.43)

< CT (11401122 + 11Vvnig) .

In order to estimate the term Ilvn"01122, taking t = 0 in (2.14), we find

11Vn0112 =

I

n

Avni.vnttodx + I

II

Avno.vnttodx

-I

vni
·vnd

ttox + Ivnl 1 m-2 I

f(u(0)).v"nodx.

n

Thanks to Cauchy-Schwartz inequality (Lemma 1.2.10), we write

1V00n0122 < 1V00n012

IlAvn1112 + IlAvn0112 + Ilf(u(0))112 + (I17)1n12(m-1) dx

~

2

1)

;

which implies, by using (2.11) and (2.12) , that

1140112 < IlAvni112 + IlAvn0112 + Ilf(u(0))112 + (I1v1n12(m-1) dx

~

1

2

< C.

(2.44)

Then,

WI/n(t) < LT, (2.45)

t

I

0

I

4(m -- 1)

m2

( :t ( IVInl m-2

Vfn) ) 2 dxds < LT, (2.46)

and

t

I

0

and

t

I

0

1VV10nk22 ds < LT, (2.47)

I v00ncXdS < LT. (2.48)

Chapter 2. Local Existence

 
 

30

where LT > 0.

From (2.11), (2.12) and (2.44) - (2.48), we deduce

v00 n is bounded in L°°([0, T] , L2(1)),
v is bounded in L°°([0,T] ,H1 0(1)),

@ m-2

1,

..., m.

(2.49) (2.50) (2.51) (2.52)

(2.53)
(2.54)
(2.55)

jv0 2 is bounded in L2([0, T] L2(1)), i

v0 =

nj n ,

@t ( ~

3.Pass to the limit:

By the first, the second and the third estimates, we obtain

v is bounded in L°°([0, T] , H2(1) fl H1 0(1)),

v0 n is bounded in L°°([0,T] ,H1 0(1)),
v00 n is bounded in L°°([0, T] , L2(1)),
v0 n is bounded in Lm((0, T) x 1).

Therefore, up to a subsequence, and by using the (Theorem 1.1.5), we observe that there exists a subsequence vT of v and a function v that we my pass to the limit in (2.14), we obtain a weak solution v of (2.1) with the above regularity

vT -~ v in L°°([0, T] , H1 0(1) fl H2 (1)),
v0 ~ -~ vein L°°([0, T] , H1 0(1) fl Lm(1)),

v00

~

-* v,,in L°°([0, T ] , L2(1)).

By using the fact that

L°°([0, T] , L2(1)) ,! L2([0, T] , L2(1)),

L°°([0,T] ,H1 0(1)) ,! L2([0,T] ,H1 0(1)).

We get

v0 n is bounded in L2([0, T] , H1 0(1)),

v00 n is bounded in L2([0, T] , L2(1)),

therefore,

v0 n is bounded in H1([0, T] , H1(1)). (2.56)

Consequently, since the embedding

H1([0,T] ,H1(1)) ,! L2([0,T] ,L2(1))

is compact, then we can extract a subsequence v,' such that

71, --> V' in L2([0,T] , L2(Q)). (2.57)

which implies

v0 ~--> V

0 a.e on (0, T) x ~.

By (2.20), we have

v7,' is bounded in Lm([0, T] x Q).

and by using Theorem 1.2.2

1,141m-2 ~ *n in Lml([0, T] , (Q))

m

where

m -- 1

= m'.

The estimates (2.34) and (2.46) imply that

m-2

174 2 VTI --
· v in H1([0,T] , H1(Q)

by using the fact that, the mapping u m-2 u is continuous, (Lemma 1.2.9) and since the weak

topology is separate, we deduce

'9 =lelm-2 rvr

(2.58)

m-2

~ = jv0j

2 vf

(2.59)

Then, by using the uniqueness of limit, we deduce

1741m-2 VT * vr in Lml([0, 77], prl(c)) (2.60)

1741

m-2

2 vr ~ *7)11

m-2

2 VI in H1([0, 17] , H1(Q) (2.61)

Now, we will pass to the limit in (2.14), by the same techniques as in [26]. Taking n = wi, n = T and fixed j < T,

I v,00(t).widx + I V 7), (t).V wi dx + I VeT(t).Vwidx
~ ~

- I

~ 0

g(t -- s)V 7), (s).V widsdx + I

~

Iv'T(t)Im-2 vT(t).widx (2.62)

= I

~

f(u).widx.

We obtain, by using the property of continuous of the operator in the distributions space

I v00,(t).widx *~ Z v"(t).widx, in D' (0, T)

~

Z VvT(t).Vwidx * Z Vv(t).Vwidx, in L°° (0, T)

~

I VeT(t).Vwidx *~ Z Ve(t).Vwidx, in L°° (0, T)

~

I Zt

~ 0

Zg(t - s)Vv,(s).Vwidsdx *~

~

Zt

0

g(t - s)Vv(s).Vwidsdx, in L°° (0, T)

Z

1e,(t)1m-2 (t).widx *~

Z

~

1v'(t)1n-2 e(t).widx, in L' (0,T)

We deduce from (2.62), that

Z vn(t).widx + I

~

Vv(t).Vwidx + f Vv(t).Vwidx

~

- I

st 0

g(t - s)Vv(s).Vwidsdx + I

~

1v'(t)1n-2 v'(t).widx (2.63)

= I

~

f(u).widx.

Since, the basis wi (j = 1, ...) is dense in Hj(a) n H2 (a) , we can generalize (2.63) , as follows

I

v"(t).(pdx + I

~

Vv(t).V cpdx + I

~

Vv'(t).Vcdx

- I .t1

12 0

g(t - s)Vv(s).V cpdsdx + I

~

1V1(t)1m-2 Vf(t).(pdx

Then,

= I

~

f(u).cpdx, Vcp E 1(1-(a) n H2 (a) .

v E ([0,7],H2(a) n 1j(a)) ,

vt E ([0,T] ; H10(a)) ;

vtt E ([0,7],L2(a)) ,

vt E Lm ([0,71] x (a)) : This complete the our proof of existence.

Uniqueness:

Let v1, v2 two solutions of (2.1), and let w = v1 -- v2 satisfying :

00

w

-- Aw -- Aw' +

t

I

0

g(t -- s)Awds + (lyr-2 711 -- 14r-2 v2) = 0. (2.64)

Multiplying (2.64), by w' and integrating over Q, we get

1 d

2 dt

+I

g,

0t(Ilw'ri(t)112 + 1 -- I g(s)ds) 11V wri(t)g + (g o V wri)(t))

(1 vti lm-2 vt1 -- 141m-2 v2) wtdx

= -- IlVw'ri(t)1122 + 21 (g' o Vwri)(t) -- 12 g(t) 11 Vw,,,(t) g

:

Denote by

0 J(t) = Ilw'ri(t)1122 + 1 -- I g(s)ds)11Vw,,,(t)g + (g 0 V wri)(t). (2.65)

0t

Since the function y i-- lyrn-2 y is increasing, we have

I (lei lm-2 v1 -- 141m-2 v2) w'dx > 0

and since

12(g' 0 V7n)(t) < 0,

we deduce

(d j ( t\ 0) .

(2.66)

dt k 1 )

This implies that J(t) is uniformly bounded by J(0) and is decreasing in t, since w(0) = 0, we obtain w = 0 and v1 = v2.

Proof of Lemma 2.1.1.

As in [14], since D(Q) = H2(1), we approximate, uo, u1 by sequences (uo) , (uni) in D(Q), and u by a sequence (0) in C ([0, T] , D(Q)), for the problem (2.1). Lemma 2.1.2 guarantees the existence of a sequence of unique solutions (0) satisfying (2.6) -- (2.9) . Now, to complete the proof of Lemma 2.1.1, we proceed to show that the sequence (0) is Cauchy in YT equipped with the norm

kuk2 YT = kuk2 H + kutk2 Lm([0,7]x1) '

where

MuM2H = o X

<T

{I [74 + l Mull (x, t)dx ; ~

Denote w = vi1 -- vA for ,u, given. Then w is a solution of the Cauchy problem:

8

<>>>>>>>>>>> >

>>>>>>>>>>>>:

wtt - Aw - Awt + L(w) + k(vr) - k(v~t)

= f(u~) -- f(u~), x 2 Q, t > 0

w(0, x) = upo - uo, wt(0, x) = uu1 - uo, x 2 Q w(t,x) = 0, x 2 I', t > 0

, (2.67)

where,

k(vt) = Ivr Im-2 vr
f(u~) = IulIP-2 uli

L(w) =

t

I

0

g(t -- s)Aw(s, x)ds.

1

2

d

8

<

:

dt

The energy equality reads as

0 1 9

Zt =

0

kwtk2 2 + @1 ~ g(s)ds A krwk2 2 + (g ~ rw)(t) ;

+I

n

~ ~

k(v~ t ) ~ k(v~ t ) wtdx + IVwtk22

(2.68)

= I

~

(f(uP) - f(u~)) wtdx + 21 (g' o Vw) (s)ds -- 21 IVw(s)k22

t

I

0

g(s)ds.

~~~~~~

I

(f(u) -- f(u)) (v -- v) dx

~~~~~~

< C(Iu11 + MuL)1-2 Mu - uMH 1v - vkH ,

The term,

I

~ ~ Z ~ ~ ~

~~~v ~~~ ~

m2

k(v~ t ) ~ k(v~ t ) wtdx = jv~ t jm~2 v t ~ v v t ~ v dx

t t t

is nonnegative.

We need to estimate

fulfilled for u, u, v, v 2 1/(1-(Q), where C is a constant depending on Q, l, p only. Then, Holder's

inequality yields, for 1

q

+

1
n

+

1

2

2n

= 1 (q = n - 2),

~~~~~~

I

(f(u~) - f(u~)) wtdx

~~~~~~

=

~~~~~~

I

( ~

ju~jp~2 u ~ ~~u~p2 u ~ v t ~ v dx

t

~~~~~~

< C Me -- u9 L9 4i -- vi L2 (1101V-2) + 11u91:-(P2 _2) J.

(2.69)

The Sobolev embedding Lq c- 1/(1-(Q) gives

Mu~ - u9i9(n) < C MVO - Vu9L2(n).

Then,

1101113n-02 3_2) + 11u1119:03_2) < C(1101113L2g1) +W 1119,;(2n)).

The necessity to estimate Iluilln(p_2) by the energy norm MulH requires a restriction on p. Namely,

we need n(p - 2) < 2n then the Sobolev embedding Lq c- 1/(1-(Q) gives n - 2,

ku

Ikp~2 n09-2) < 11u111-12. Therefore, (2.69) takes the form

~~~~~~

I

(f(uP) -- f(u~)) wtdx

~~~~~~

~ ~ ~ ~ ~

~ C ~v

~ t ~ v ~ ~

t ~L2() ~ru~ ~ ru~~ ~L2(~) kru~kp~2

L2() + ~ru~~ ~p2 (2.70)

L2(~)

under the fact that

t

I

0 (g' o Vw) (s)ds <0,

we conclude

~

t

I 0

(g' o Vw) (s)ds + (g 0 Vw) (t) + 1Vw(t)k22

t

I 0

g(s)ds > 0.

Thus,

2 2 2

11w(t, .)11H <-- 2 11w(0, .)11H + C

t

I 0

MVu~ - our ~L2(n) Mwt(s, .)1H ds.

The Gronwell Lemma and Young's inequality guarantee that

Ilw (t , .)11 H < Ilw (0 , .)11 H + CT Me- u91C([07],H) .

Since

PI*, .) -- v(t, .) 11H < C!Ivu (0, .) -- v (0, .)11H + CT 110 -- u9!I!IC([027],H) , (2.71)

then fv~I is a Cauchy sequence in C([0, t] , H), since ful and {v(0, .)} are Cauchy sequences in C([0, T] , H) and H, respectively.

Now, we shall prove that {v~t } is a Cauchy sequence, in Lm ([0, T] x Q), to control the norm kv~ t k2 Lm([0;T ]x~) . By the following algebraic inequality

(a1a1m-2 --0101m-2) (a -- 0)> C la -- 01m, (2.72)

which holds for any real a, 0 and c, we get I (k(4) - k(4)) wtdx = I

(vr Ivr n-2 - 74 vim-2 (vr - 4) dx

2

< C,144 - 74 .

LM ([0,7] x11)

This estimate combined with (2.68) gives

!I !I

!I4 - 74 112 _,r,

t

I

0

+CR

!IL ([0,t] x12) < C IIvA(0, .) - v(0, .)11L,T,([0,t]xSZ)

!I!Iu~ - uIILm([0,t]xf2) PI*, .) - v(t, .)11 Lm([0,t] x12) ds.

So by using Cromwell Lemma, we obtain {vn is a Cauchy sequence, in Lm ([0, T] x Q) and hence fv~I is a Cauchy sequence in YT. Let v its limit in YT and by Lemma 2.1.2, v is a weak solution of (2.1).

Now, we are ready to show the local existence of the problem (P) Proof of Theorem 2.1.1.

Let (uo,u1) 2 (H10(Q))2 , and

R2 = (1Vuok22 + Ilui g)

For any T > 0, consider

MT = fu 2 YT : u(0) = up, ut(0) = ui and MullyT < RI .

Let

0: MT--MT

u i-- v = 0(u).

We will prove as in [13] that,

(i) 0(MT) g MT.

(ii) 0 is contraction in MT.

Beginning by the first assertion. By Lemma 2.1.1, for any u 2 MT we may define v = 0(u), the unique solution of problem (2.1). We claim that, for a suitable T > 0, 0 is contractive map satisfying

0(MT) c MT.

1

2

8

<

:

Let u 2 MT, the corresponding solution v = 0(u) satisfies for all t 2 [0, T] the energy identity :

0 1 9

Zt =

kv0(t)k2 2 + @1 ~ g(s)ds A krv(t)k2 2 + (g ~ rv)(t) ;

0

t

+f

0

1Vv'(s)122 ds +

t

I

0

1v'(s)1C)ds

(2.73)

1 ~kv1k2

= 2 + krv0k2 ~ +

2

2

t

I

0

I

lu(s)119-2 u(s)v'(t)dxds.

We get

1 2 1 2

2 Ilv(t)IlyT 2 Ilv(0)11yT +

t

I

0

I

lu(s)119-2 u(s)v'(t)dxds. (2.74)

We estimate the last term in the right-hand side in (2.74) as follows: thanks to Holder's, Young's inequalities, we have

I 1u(s)j1-2 u(s)v'(t)dx < C 1uKT 1v117 ,

then,

Ilv(t)g,T < Ilv(0)117, + CRP

t

I

0

IvIIT ds,

where C depending only on T, R. Recalling that uo, ui converge, then

Ilv(t)IlyT <11v(0)11177, +CRPT.

Choosing T sufficiently small, we getlIvIlyT < R, which shows that

0(MT) C MT.

Now, we prove that 0 is contraction in MT. Taking wi and w2 in MT, subtracting the two equations in (2.1), for v1 = 4(wi) and v2 = 0(w2), and setting v = v1 -- v2, we obtain for all n 2 Hj(Q) and a.e. t 2 [0, T]

I

vtt.ndx + I

n

VvVi7dx + f

n

Vvtviidx + f

n

t

I

0

g(t -- s)VvVndsdx

+I

n

(Ivtlm-2 vt) ndx

= I

~

(Iwilp-2 w1 -- 1w21P-2 wOndx. (2.75)

Therefore, by taking n = vt in (2.75) and using the same techniques as above, we obtain

Ilv(t, .)g,, < C

t

I

0

~kw1kp~2 YT + 11w21G2) 11w 1 -- w2llyT Ilv (s , .)11iTT ds . (2.76)

It's easy to see that

2 2 2

117*, .Ali = 11(1)(w1) - (1)(w2)1117t a Ilwi -- w2llyt , (2.77)

for some 0 < a < 1 where a = 2CTRP-2.

Finally by the contraction mapping theorem together with (2.77), we obtain that there exists a unique weak solution u of u = 0(u) and as 0(u) 2 YT we have u 2 YT. So there exists a unique weak solution u to our problem (P) defined on [0, T], The main statement of Theorem 2.1.1 is proved.

Remark 2.1.1 Let us mention that in our problem (P) the existence of the term source ( f( u) = luIP-2 u ) in the right hand forces us to use the contraction mapping theorem. Since we assume a little restriction on the initial data. To this end, let us mention again that our result holds by the well depth method, by choosing the initial data satisfying a more restrictions.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il faudrait pour le bonheur des états que les philosophes fussent roi ou que les rois fussent philosophes"   Platon