Conclusion générale et perspectives
Ce mémoire qui s'inscrit dans le cadre du
programme AMMA (Analyse Multidisciplinaire de la Mousson
Africaine) et du projet Ouémé-2025, vise a comprendre le
fonctionnement de l'interface surface - atmosphère. L'objectif est de
réaliser une première estimation des flux
d'énergie et de documenter les flux
d'évapotranspiration en climat soudanien. 
Les interactions surface - atmosphère sont complexes.
L'analyse détaillée des processus des
différents échanges qui s'effectuent dans
la couche limite atmosphérique est indispensable a leur
compréhension. Dans cette optique, l'analyse du
bilan d'énergie a la surface est une étape
incontournable. Comprendre cette relation en zone soudanienne est
particulièrement intéressant en raison du lien étroit
observé entre condition atmosphérique et
variabilité climatique, ainsi que le rOle
important que joue l'évapotranspiration dans le bilan
hydrologique. 
Ce travail constitue une première analyse du
bilan d'énergie en zone soudanienne. Notre étude a
porté sur deux stations situées dans la
Donga/Bénin une jachère herbacée (Nalohou
974484N, 160457E, 449 m) et une forêt claire (Bellefoungou
979115N, 171800E, 414 m). 
L'analyse
météorologique sur une année faite
(chapitre 2) a partir des données de Nalohou montre une
saisonnalité notable des paramètres climatiques. De
cette analyse, trois périodes de quinze (15) jours
chacune ont été identifiées. Les principaux termes du
bilan d'énergie de méso-échelle ont
été évalués et leur variabilité
caractérisée sur ces différentes périodes. Le
calcul des flux turbulents de chaleur est celui qui nécessite
le plus d'attention. Le flux de chaleur a la surface du sol a été
calculé par deux méthodes la méthode des
harmoniques et la formulation empirique de la FAO. 
Dans un premier temps, nous avons comparé le flux de
chaleur harmonique calculé a Nalohou en janvier oi le sol est
nu et aucune pluie n'est tombée depuis des mois, avec celui
calculé a partir de la formulation de la FAO. On a
remarqué a travers cette comparaison que le flux
de chaleur calculé a partir de la formulation de FAO sous estime le flux
de chaleur a la surface du sol quand le sol est sec et chaud de
presque 50%. La conclusion tirée de cette comparaison est
que la formulation de la FAO est mise a défaut pour les sols
chauds et secs. D'autre part, on a constaté a partir de la comparaison
des cycles journaliers de G au niveau des deux sites et sur les
trois périodes que ce paramètre est plus important a
Bellefoungou qu'a Nalohou. Le déphasage
temporel et la faible amplitude observés en Novembre a Nalohou sont
liés a la couverture du sol (litière) qui diminue et
retarde la quantité d'énergie devant
parvenir a la surface du sol. Elle joue donc le rOle d'amortisseur entre la
surface du sol et l'atmosphère. 
Les flux turbulents de chaleur ont été
mesurés par eddy corrélation. L'analyse de
leur qualité a permis de vérifier la fiabilité
des ces données. Plus des 75 % des données
qualifiables sont de qualité haute c'est-a-dire
qu'elles sont utilisables pour une recherche fondamentale. Aussi,
l'analyse des tracés des cycles journaliers de H
et de LE ainsi que de leurs qualités
associées a montré que les données sont de
très bonne qualité dans la journée
lorsque l'atmosphère est instable. On a
remarqué également que la
qualité de LE est liée a celle de H. Plus
l'atmosphère est turbulente et plus l'eau arrive a s'évaporer
rapidement au sein de celle-ci. On a remarqué enfin
que, les flux d'évapotranspiration mesurés sur la
forêt de Bellefoungou étaient de mauvaise
qualité avant la construction d'un pilOnne pour supporter les
appareils. L'ancien mat téléscopique était trop
court et surtout trop instable pour permettre des mesures de
qualité bonne. 
Les résultats du calcul du bilan
d'énergie (Nalohou) sur les trois périodes ont
montré une saisonnalité très marquée des
flux d'énergie. La saison sèche est
caractérisée par un taux élevé du flux de chaleur
sensible et du flux de chaleur a la surface du sol; le flux de
chaleur latente est faible pendant cette période. En saison humide, le
flux de chaleur latente est prépondérant. En Novembre oii le
rayonnement net est plus élevé que ce
qui est observé en 
saison sèche et en saison humide, H et G
représentent aussi les termes majoritaires du bilan. Mais, ils demeurent
plus faibles que ceux observés en Janvier. Le flux de chaleur
latente est moyen durant cette période. La variabilité
spatiale des flux de chaleur sensible et de chaleur latente a été
montrée a travers la comparaison de ces paramètres au niveau des
deux sites en saison sèche et humide. Nous pouvons a partir de cette
première analyse du bilan d'énergie donner
une dynamique de l'évapotranspiration
réelle au pas de temps mensuel, journalier et voir même de la
demi-heure. 
Les travaux réalisés dans le cadre de cette
étude nous ont permis de quantifier chacune des composantes
du bilan d'énergie sur trois périodes de 15 jours
chacune dans la Donga/Bénin. Une analyse plus
poussée reste nécessaire pour l'estimation du flux de chaleur
latente au vu des résultats qui montrent une sous estimation
systématique de ce terme. D'autre part, une
attention particulière sera portée au calcul du flux a la surface
du sol aux inter-saisons en raison de la couche de litière
laissée sur le site de mesure en Novembre. 
La poursuite de cette étude sur une durée plus
longue permettra de mieux caractériser les
variabilités intra et inter saisonnières des différentes
composantes du bilan. Elle permettra également
d'acquérir une meilleure compréhension du
fonctionnement de l'interface surface - atmosphère en vue de la
documentation des flux d'évapotranspiration. Il est aussi a noter
que cette étude menée sur une période plus
longue contribuera a bien identifier les paramètres
qui influencent le bilan d'énergie en zone
soudanienne. Enfin, il s'agira également de
vérifier la fermeture du bilan de masse
hydrologique a partir des mesures de
l'évapotranspiration réelle. Une comparaison entre
l'évapotranspiration réelle et l'évapotranspiration
potentielle est envisagée afin de tester le réalisme
des paramétrisations couramment utilisées en
hydrologie et qui estiment
l'évapotranspiration réelle a partir de
l'évapotranspiration potentielle. 
.1 Références
Bibliographiques 
[11 Descroix, L., Mahé, G., Lebel, T., Favreau, G.,
Galle, S, Gautier, E., Olivry, J-C., Albergel, J.,
Amogu, 0., Cappelaere, B., Dessouassi, R., Diedhiou, A., Le Breton,
E., Mamadou, I., Sighomnou, D., 2009. Spatio-Temporal
Variability of Hydrological Regimes
Around the Boundaries between Sahelian and Sudanian Areas of West Africa: A
Synthesis. Journal of Hydrology, AMMA special
issue, in press. doi :10.1016/j.jhydrol.2008.12.012. 
[21 Andersen, I., Dione, O., Jarosewich-Holder, M.,
Olivry, J.C., 2005. The Niger River Basin : a vision for
sustainable management.. The World Bank, Washington, DC,
the USA; Directions in development, K.G. Golitzen Ed.145 p. 
[31 Mahé, G., Olivry, J. C., Dessouassi, R.,
Orange, D., Bamba, F. and Servat, E. 2000. Relations eaux de surface
- eaux souterraines d'une rivière tropicale au Mali. Comptes Rendus de
l'Académie des Sciences, Serie IIa, 330, 689-692. 
[41 Zin, I., Zribi, M., Ottlé, C., Hiernaux, P.,
Lacaze, R., Le Hégarat-Mascle, S., Sanou, B., André,
C., Guibert, S., Saux-Picard, S., Dessay, N., Boulain, N.,
Cappelaere, B., Descroix, L., Galle, S., Peugeot, C.,
Seghieri, J., Séguis, L., 2009. Land cover
assessment on the three AMMA experimental sites from SPOT/HRVIR data. Soumis a
International Journal of Applied Earth Observation and Geoinformation. 
[51 Galle S., Séguis L., Arjounin M., Bariac
T., Bouchez J.-M., Braud I., Cohard J.-M., Descloitres M., Favreau G.,
Kamagaté B., Laurent J.-P., Le Lay M., Malinur F.,
Peugeot C., Robain H., Seghieri J., Seidel J.-L., Varado
N., Zin I. and Zribi M., 2005. Evaluation des termes du bilan
hydrologique de la Donga par mesure
et modélisation. In : "Premier colloque de restitution
scientifique Ecosphère Continentale", Toulouse. ECCO-PNRH :
411-416. 
[61 Varado N., Braud I., Galle S., Le Lay M.,
Séguis L., Kamagaté B. and Depraetere C.,
2006. Multicriteria assessment of the Representative Elementary
Watershed approach on the Donga catchment (Benin) using a
downward approach of model complexity.
Hydrology and Earth System Sciences, 10 :
427-442. 
[71 Le Lay M., Saulnier G.-M., Galle S.,
Séguis L., Métadier M. and Peugeot C.,
2008. Model representation of the Sudanian hydrological
water cycle. Application on the Donga catchment
(Bénin). Journal of Hydrology, 363(1-4) :
32-41. 
[8lFoken.,T., 2006. "50 Years of the Monin-Obukhov
Theory ". Boundary-Layer
Meteorology 119(3) : 431-447. 
[91 Van Dijk, A., Moene, A.F., De Bruin, H.A.R, 2004. The
principles of surface flux physics : theory, practice and
description of the ECPACK library.Meteorology and Air
Quality Group Wageningen University
Duivendaal 2 6701 AP Wageningen The Netherlands. 
[101 Prandtl, L., 1904. Uber,
Flussibkeitsbewegung bei sehr kleiner Reibung,
Verhandl. III, Internat. Math.- Kong., Heidelberg,
Teubner, Leipzig pp.484-491. 
[111 Brutsaert, W., 1982. Evaporation in the Atmosphere,
theory History, And Applications, 1st ed., 299pp.,
Dordrecht, Kluwer Academic Publishers, 1982. 
[121 Heusinkveld, B.G., Jacobs A.F.G., Holtslag,
A.A.M., Berkowicz, S.M., 2003. Surface energy balance closure in an
arid region : role of soil heat flux. Agricultural and
Forest Meteorology 122 (2004) 21-37. 
[131 Guyot, A., Cohard, J-M., Anquetin,
S., Galle, S., 2008. Combined analysis of energy and
water budgets to consolidate latent heat fux estimation
using an infrared scintillometer. Agricultural and Forest
Meteorology, this issue. 
[141 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998.
Crop Evapotranspiration : Guidelines for Computing Crop Water
Requirements. United Nations Food and Agriculture
Organization, Irrigation and Drainage Paper
56. Rome, Italy, 300 pp. 
[151 Van Wijk, W. et De Vries, D., 1963. Periodic temperature
variations in a homogeneous soil. Physics of Plant
Environment : 103-143. 
[161 Kaimal, J. C. et Businger, J. A., 1963. A
Continuous Wave Sonic Anemometer-Thermometer, J. Applied Meteorol., 2,
156-164. 
[171 Fleagle, R. G., Businger, J. A., 1980.
An Introduction to Atmospheric Physics, Academic Press, Inc., New
York. 
[181 Schotanus, P., Nieuwstadt, F. T. M., De Bruin, H. A. R.,
1983. Temperature Measurement with a Sonic Anemometer and its Application to
Heat and Moisture Fluxes, Boundary-Layer Meteorol., 26,
81-93. 
[191 Kaimal, J. C. et Gaynor, J. E., 1991. Another
Look at Sonic Thermometry, Boundary-Layer
Meteorol., 56, 401-410. 
[201 Liu, H., Peters, G., Foken, T., 2001. New
Equations for Sonic Temperature Variance and
Buoyancy Heat Flux with an Omnidirectional Sonic
Anemometer, Boundary-Layer Meteorol., 100, 459-468. 
[211 Kaimal, J.C. et Finnigan, J.J., 1994. Atmospheric
boundary layer flows : Their structure and measurement.
Oxford University Press, New York, NY, 289 pp. 
[221 Tanner, B.D., Swiatek, E. et Greene, J.P., 1993.
Density fluctuations and use of the krypton
hygrometer in surface flux measurements. In : R.G. Allen (Editor),
Management of irrigation and drainage
systems : integrated perspectives. American
Society of Civil Engineers, New York, NY, pp. 945-952. 
[231 Webb, E.K., Pearman, G.I. et Leuning, R.,
1980. Correction of the flux measurements for density effects due to
heat and water vapour transfer. Quarterly Journal of The
Royal Meteorological Society, 106 : 85-100. 
[241 Liebethal, C. et Foken, T., 2004. On the
significance of the Webb correction to fluxes.
Corrigendum. Boundary-Layer
Meteorology, 113 : 301. 
[251 Liebethal, C. et Foken, T., 2003. On the
significance of the Webb correction to fluxes. 
Boundary-Layer Meteorology, 109
: 99-106. 
[261 Fuehrer, P.L. et Friehe, C.H., 2002. Flux corrections
revisited. Boundary-Layer Meteorology, 102 :
415-457. 
[271 Moore, C.J., 1986. Frequency response
corrections for eddy correlation systems.
Boundary-Layer Meteorology, 37 : 17-35. 
[281 Horst, T.W., 2003. Corrections to Sensible and Latent Heat
Flux Measurements. 
[291 Vickers, D. et Mahrt, L., 1997. Quality control
and flux sampling problems for tower and aircraft data. Journal of
Atmospheric and Oceanic Technology, 14 : 512-526. 
[301 Højstrup, J., 1993. A statistical data
screening procedure. Measuring Science
Technology, 4 : 153-157. 
[311 Foken, T. et Wichura, B., 1996. Tools for
quality assessment of surface-based flux measurements.
Agricultural and Forest Meteorology, 78 : 83-105. 
[321 Foken, T., et Mauder, M., 2004. Documentation and
Instruction Manual of the Eddy Covariance Software
Package TK2. Department of Micrometeorology, Univ of
Bayreuth, Germany. 
[331 Favier,V., 2004. Etude du bilan
d'énergie de surface et de la production des
écoulements de fonte d'un glacier des Andes
d'Equateur; relation glacier-climat en zone
tropicale. These de doctorat de l'Université Montpellier II, 248 pp. 
[341 Rubio, E., Caselles, V., Coll, C., Valour, E. et
Sospedra, F., 2003. Thermal-infrared emissivities of natural surfaces :
improvements on the experimental set-up and new measurements, International
Journal of Remote Sensing,24 :24, 5379 - 5390. 
[351 Aubinet, M., Grelle, A., Ibrom, A., Rannik, U.,
Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier,
P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T.,
Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders,
W., Valentini, R. et Vesala, T., 2000. Estimates of the annual net carbon and
water exchange of forests : The EUROFLUX methodology.
Andvances in Ecological Research, 30 : 113-175. 
[361 Aubinet, M., Chermanne, B., Vandenhaute, M.,
Longdoz, B., Yernaux, M., Lai-tat, E., 2001. Long term
carbon dioxide exchange above a mixed forest in the
Belgian Ardennes. Agric. For. Meteorol. 108, 293-315. 
[371 Foken, T., Wimmer, F., Mauder, M., Thomas, C.,
Liebethalal, C., 2006. Some aspects of the energy balance closure
problem. Department of Micrometeorology, Univ of
Bayreuth, Germany. 
[381 Kukharets, V. P., Nalbandyan, H. G., et Foken,
T., 2000. Thermal Interactions between the underlying
surface and a nonstationary radiation flux, Izv., Atmos. Ocenanic
Phys., 36, 318-325. 
[391 Panin, G. N., Tetzlaff, G., et Raabe, A., 1998.
Inhomogeneity of the land surface and 
problems in the 10 parameterization of surface fluxes in natural
conditions,Theor. Appl. Climat., 60, 163-178. 
.2 Annexe1 Proclist de Nalohou 
Comments 
Comment = Station Campbell 
Comment = Nalohou Csat + Licor 
Comment = 20/10/2008 
Comments 
Comment = Actions effectuees 
Comment = Extraction des donnees du fichier meteo, 
Comment = Despike, Calculs Statistiques, Pression
partielle 
Comments 
Comment = Direction et vitesses du vent, Rotations 
Comment = Comment = Comments 
Comment = Correction temperature sonique, Covariance
wT, wq et wco2 
Comment = Correction Webb LE et Fco2 
Comment = Flux de chaleur sensible corrige 
Comments 
Comment = variable d'installation 
Comment = Comment = Set Values From Time = 
To Time = 
Number of Variables = 3 
Storage Label = hauteur-sonic 
Assignment value = 4.95 
Storage Label = ecart-nord 
Assignment value = 0 
Storage Label = ang-sonic-licor 
Assignment value = 0 
Comments 
Comment = Variable de configuration sonic licor 
Comment = pour le calcul des corrections
frequentielles 
Set Values From Time = 
To Time = 
Number of Variables = 10 
Storage Label = Csat-samplefreq 
Assignment value = 20 
Storage Label = Licor7500-samplefreq 
Assignment value = 20 
Storage Label = Csat-path 
Assignment value = 0.116 
Storage Label = Licor7500-path 
Assignment value = 0.125 
Storage Label = wT-ver-path-sep 
Assignment value = 0 
Storage Label = wT-hor-path-sep 
Assignment value = 0 
Storage Label = wx-ver-path-sep 
Assignment value = 0.1 
Storage Label = wx-hor-path-sep 
Assignment value = 0.3 
Storage Label = Csat-TimeConStant 
Assignment value = 0.05 
Storage Label = Licor7500-TimeConStant 
Assignment value = 0.05 
Comments 
Comment = Valeur dynamiques alternatives 
Comment = T en(c)c, P en kPa, Rh en % 
Set Values From Time = 
To Time = 
Number of Variables = 3 
Storage Label = T-alt 
Assignment value = 30 
Storage Label = P-alt 
Assignment value = 100 
Storage Label = Rh-alt 
Assignment value = 70 
Comments 
Comment = rhoCp en J/m3/K 
Comment = L en J/g 
Comment = ecart nord en degre 
Set Values From Time = 
To Time = 
Number of Variables = 2 
Storage Label = rhoCp-cst 
Assignment value = 1130 
Storage Label = L-cst 
Assignment value = 2450 
Comments 
Comment = Extraction des variables 
Comment = du fichier meteo 
Comment = Preprocessed Files 
File <0>=C \Documents and
Settings\mamadou\Bureau\traitementedire
\na\na-met-090707-040908-EdiRe-heure
locale-rugosite.csv 
File <1> = File
<2> = Set Values From Time = 
To Time = 
Number of Variables = 7 
Storage Label = offsetc 
Assignment value = <0>
offsetc 
Storage Label = gainc 
Assignment value = <0>
gainc 
Storage Label = offsetq 
Assignment value = <0>
offsetq 
Storage Label = gainq 
Assignment value = <0>
gainq 
Storage Label = h-veg 
Assignment value = <0>
h 
Storage Label = disp-height 
Assignment value = <0> d 
Storage Label = Z0 
Assignment value = <0> Z0 
Set Values 
From Time = To Time = 
Number of Variables = 3 
Storage Label = T-meteo 
Assignment value = <0>
Ta-meteo 
Storage Label = Rh-meteo 
Assignment value = <0>
Rh 
Storage Label = P-meteo 
Assignment value = <0>
Patm 
Comments 
Comment = Conversion de la pression meteo 
Comment = unite d'entree hPa 
Comment = unite de sortie kPa 
User defined From Time = To Time = 
Storage Label = P-meteo 
Apply to = 
Apply by = 
Equation = P-meteo*0.1 
Variable = P-meteo 
Comments 
Comment = Extraction des variables du fichier brut Comment =
Vitesse en m/S, Co2 en mg/m3, H20 en g/m3 Comment =
Pression en kpa, T en~C 
Extract 
From Time = To Time = 
Channel = 1 
Label for Signal = SECONDS 
Extract 
From Time = To Time = 
Channel = 2 
Label for Signal = NANOSECONDS 
Extract 
From Time = To Time = 
Channel = 3 
Label for Signal = RECORD 
Extract 
From Time = To Time = 
Channel = 4 
Label for Signal = u-sonic 
Extract 
From Time = To Time = 
Channel = 5 
Label for Signal = v-sonic 
Extract 
From Time = To Time = 
Channel = 6 
Label for Signal = w-sonic 
Extract 
From Time = To Time = 
Channel = 7 
Label for Signal = T-sonic 
Extract 
From Time = To Time = 
Channel = 8 
Label for Signal = diag-csat 
Extract 
From Time = To Time = 
Channel = 9 
Label for Signal = co2-licor 
Extract 
From Time = To Time = 
Channel = 10 
Label for Signal = q-licor 
Extract 
From Time = 
To Time = 
Channel = 11 
Label for Signal = P-licor 
Comments 
Comment = Changement d'unité 
Comment = CO2 en mmol/m3 
Comment = h2O en g/m3 
Linear 
From Time = To Time = 
Signal = co2-licor 
1st Offset = 0 
1st Gain = 0.0227273 
1st Curvature = 0 
2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0 
Linear 
From Time = To Time = 
Signal = q-licor 1st Offset = 0 1st Gain
= 1 1st Curvature = 0 
2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0 
Comments 
Comment = Despike 
Comment = 3 fois l'écart-type 
Comment = Si plus de 4 spike de suite, on ne les compte pas
Despike 
From Time = To Time = 
Signal = u-sonic Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-U 
Despike 
From Time = To Time = 
Signal = v-sonic Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-V 
Despike 
From Time = To Time = 
Signal = w-sonic 
Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-W 
Despike 
From Time = To Time = 
Signal = co2-licor 
Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-co2 
Despike 
From Time = To Time = 
Signal = q-licor Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-q 
Despike 
From Time = To Time = 
Signal = T-sonic 
Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-T 
Despike 
From Time = To Time = 
Signal = P-licor Standard Deviations = 3 
Spike width = 4 
Spike % consistency = 50 
Replace spikes = x 
Storage Label spike count = spike-P 
Comments 
Comment = Calcul Stat 
Comment = moyenne et écart-types
Comment = sur U, V, W, co2, q, T, P 1 chn statistics 
From Time = 
To Time = 
Signal = u-sonic 
Storage Label Mean = u-sonic-mean
Storage Label Std Dev = u-sonic-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = v-sonic 
Storage Label Mean = v-sonic-mean
Storage Label Std Dev = v-sonic-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = w-sonic 
Storage Label Mean = w-sonic-mean
Storage Label Std Dev = w-sonic-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = T-sonic 
Storage Label Mean = T-sonic-mean
Storage Label Std Dev = T-sonic-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = co2-licor 
Storage Label Mean = co2-licor-mean
Storage Label Std Dev = co2-licor-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = q-licor 
Storage Label Mean = q-licor-mean
Storage Label Std Dev = q-licor-std Storage
Label Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = Alt
Turbulent Intensity Denominator = 1 chn statistics 
From Time = 
To Time = 
Signal = P-licor 
Storage Label Mean = P-licor-mean
Storage Label Std Dev = P-licor-std Storage Label
Skewness = 
Storage Label Kurtosis = Storage Label
Maximum = Storage Label Minimum = Storage Label Variance
= 
Storage Label Turbulent Intensity = 
Alt Turbulent Intensity Denominator = 
Spectra 
From Time = 18/01/2008 12 :00 :00 
To Time = 18/01/2008 16 :00 :00 
Signal = T-sonic 
Window = Hamming Kaiser/Bell coef = Output Spectra =
spec-T Sort Output = 
Detrend data = None Comments 
Comment = Direction du vent 
Comment = se fait avant rotation 
Comment = 
Wind direction 
From Time = 
To Time = 
Signal (u) = u-sonic Signal (v) = v-sonic
Orientation = ecart-nord 
Wind Direction Components = U-fS-V-fE 
Wind Direction Output = N-0-deg-E-90-deg 
Storage Label Wind Direction = Wind-sonic-Direction
Storage Label Wind Dir Std Dev = Wind-sonic-Direction-std
Comments 
Comment = Rotation (double rotation) 
Comment = Vitesse du vent 
Comment = dans sys orthogonal 
Rotation coefficients From Time = 
To Time = 
Signal (u) = u-sonic Signal (v) =
v-sonic Signal (w) = w-sonic Storage Label Alpha =
Alpha 
Storage Label Beta = Beta 
Storage Label Gamma = Gamma 
Optional mean u = Optional mean v = Optional mean w =
Rotation 
From Time = 
To Time = 
Signal (u) = u-sonic Signal (v) =
v-sonic Signal (w) = w-sonic Alpha = Alpha 
Beta = Beta 
Gamma = Gamma Do 1st Rot = x 
Do 2nd Rot = x 
Do 3rd Rot = x 
Comments 
Comment = Les variables de vent sont 
Comment = dans un repére instantané fonction 
Comment = du vent (v-sonic-mean = 0) 
1 chn statistics 
From Time = 
To Time = 
Signal = u-sonic 
Storage Label Mean = wind-sonic-speed-mean 
Storage Label Std Dev = wind-sonic-speed-std 
Storage Label Skewness = 
Storage Label Kurtosis = 
Storage Label Maximum = wind-sonic-speed-max 
Storage Label Minimum = 
Comments 
Comment = Calcul et Retrait du Lag 
Comment = pour le Licor Openpath 
Comment = 
Cross Correlate 
From Time = 
To Time = 
Signal = w-sonic 
Signal which lags = q-licor 
Correlation type = Covariance 
Output Correlation curve = 10 
Storage Label Peak Time =
time-lag-wq 
Storage Label Peak Value = 
Cross Correlate 
From Time = 
To Time = 
Signal = w-sonic 
Signal which lags = co2-licor 
Correlation type = Covariance 
Output Correlation curve = 10 
Storage Label Peak Time = time-lag-wco2 
Storage Label Peak Value = 
Cross Correlate 
From Time = 
To Time = 
Signal = w-sonic 
Signal which lags = P-licor 
Correlation type = Covariance 
Output Correlation curve = 10 
Storage Label Peak Time = time-lag-wp 
Storage Label Peak Value = 
Remove Lag From Time = To Time = 
Signal = co2-licor 
Min Lag (sec) = -2 
Lag (sec) = time-lag-wco2 
Max Lag (sec) = 2 
Below Min default (sec) = 0 
Above Max default (sec) = 0 
Remove Lag From Time = To Time = 
Signal = q-licor Min Lag (sec) =
-2 
Lag (sec) = time-lag-wq 
Max Lag (sec) = 2 
Below Min default (sec) = 0 
Above Max default (sec) = 0 
Remove Lag From Time = To Time = 
Signal = P-licor Min Lag (sec) = -2 
Lag (sec) = time-lag-wp 
Max Lag (sec) = 2 
Below Min default (sec) = 0 
Above Max default (sec) = 0 
Comments 
Comment = Calcul de la pression partielle 
Comment = directement en kPa 
Comment = Partial pressure From Time = To Time = 
Storage Label = e-vapor-licor 
Apply to = 
Apply by = 
Variable type = Absolute density 
Measured variable = q-licor-mean 
Min or QC = 0.001 
Max or QC = 40 
Temperature (C) = T-sonic-mean 
Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean 
Min or QC = 0 Max or QC = 105 
Molecular weight (g/mole) = 18.0 
Conc conv factor = 1000 
Partial pressure From Time = To Time = 
Storage Label = e-vapor-meteo 
Apply to = 
Apply by = 
Variable type = Relative humidity 
Measured variable = Rh-meteo 
Min or QC = Max or QC = Temperature (C) = T-meteo 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = Molecular weight
(g/mole) = 18.0 
Conc conv factor = 1000 
Comments 
Comment = Calcul de q-meteo 
Comment = en g/m3 
Comment = User defined From Time = To Time = 
Storage Label = q-meteo 
Apply to = 
Apply by = 
Equation =
18*e-vapor-meteo*1000/(8.32*(273.15fT-meteo)) Variable = e-vapor-meteo 
Variable = T-meteo 
Comments 
Comment = Application du gain
q-licor-mean/q-meteo a q-licor-mean Comment =
pour rephasage de q-licor sur q-meteo 
Comment = On reste en g/m3 
User defined From Time = To Time = 
Storage Label =
gain-q-licor-mean 
Apply to = 
Apply by = 
Equation =
q-meteo/q-licor-mean 
Variable = q-licor-mean 
Variable = q-meteo 
Linear 
From Time = To Time = 
Signal = q-licor 1st Offset = 0 
1st Gain = gain-q-licor-mean 
1st Curvature = 0 
2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0 
Comments 
Comment = Correction température sonique 
Comment = Schotanus et al. 1983; Manuel Csat Campbell
Scientifique Comment =
T-sonic-cor=T-sonic(1-f0.51q-licor) 
User defined From Time = To Time = 
Storage Label = T-sonic-cor 
Apply to = 
Apply by = 
Equation = ((T-sonic-mean--273.15)/(1
f.32*e-vapor-meteo/P-meteo))- 273.15 
Variable = P-meteo 
Variable = e-vapor-meteo 
Variable = T-sonic-mean 
Density of moist air 
From Time = To Time = 
Storage Label = rho-licor 
Apply to = 
Apply by = 
Vapour pressure (Kpa) = e-vapor-licor 
Min or QC = Max or QC = Temperature (C) = T-sonic-cor 
Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean 
Min or QC = Max or QC = Density of moist air 
From Time = To Time = 
Storage Label = rho-meteo 
Apply to = 
Apply by = 
Vapour pressure (Kpa) = e-vapor-meteo 
Min or QC = Max or QC = Temperature (C) = T-meteo 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = Comments 
Comment = Changement d'unité de la masse
volumique de l'air humide Comment = entrée en : 
Comment = sortie en : 
User defined From Time = To Time = 
Storage Label = rho-licor 
Apply to = 
Apply by = 
Equation = rho-licor/1000 
Variable = rho-licor 
Variable = 
Variable = 
Variable = 
Variable = 
User defined From Time = To Time = 
Storage Label = rho-meteo 
Apply to = 
Apply by = 
Equation = rho-meteo/1000 
Variable = rho-meteo 
Variable = 
Variable = 
Variable = 
Variable = 
Comments 
Comment = Calcul de rhocp 
Comment = en j/g 
Comment = 
Sensible heat flux coefficient 
From Time = To Time = 
Storage Label = rhoCp-licor 
Apply to = 
Apply by = 
Vapour pressure (Kpa) = e-vapor-licor 
Min or QC = Max or QC = Temperature (C) = T-sonic-cor 
Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean 
Min or QC = Max or QC = Alternate rhoCp = 1100 
Sensible heat flux coefficient 
From Time = To Time = 
Storage Label = rhoCp-meteo 
Apply to = 
Apply by = 
Vapour pressure (Kpa) = e-vapor-meteo 
Min or QC = Max or QC = Temperature (C) = T-meteo 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = Alternate rhoCp = 1100 
Comments 
Comment = flux de chaleur sensible sonique 
Comment = calcul covariance 
Comment = 2 chn statistics From Time = To Time = 
Signal = w-sonic Signal = T-sonic
Storage Label Covariance = wT-cov 
Storage Label Correlation = 
Storage Label Flux = H-sonic-tmp 
Flux coefficient = rhoCp-meteo 
Comments 
Comment = Flux de chaleur latente 
Comment = Calcul covariance 
Comment = 2 chn statistics From Time = To Time = 
Signal = w-sonic Signal =
q-licor Storage Label Covariance = wq-cov 
Storage Label Correlation = 
Storage Label Flux = E-licor-tmp 
Flux coefficient = 
Comments 
Comment = Calcul de la chaleur latente de vaporisation de l'eau
Comment = J/g 
Comment = 
Latent heat of evaporation 
From Time = To Time = 
Storage Label = L-meteo 
Apply to = 
Apply by = 
Temperature (C) = T-meteo 
Min or QC = Max or QC = Pressure (KPa) = P-meteo 
Min or QC = Max or QC = LE flux coef, L = L-cst 
Latent heat of evaporation 
From Time = To Time = 
Storage Label = L-licor 
Apply to = 
Apply by = 
Temperature (C) = T-sonic-cor 
Min or QC = Max or QC = Pressure (KPa) = P-licor-mean 
Min or QC = Max or QC = LE flux coef, L = L-cst 
Comments 
Comment = Calcul du flux 
Comment = Comment = User defined From Time = To Time = 
Storage Label = LE-licor-tmp 
Apply to = 
Apply by = 
Equation = E-licor-tmp*L-licor 
Variable = E-licor-tmp 
Variable = L-licor 
Comments 
Comment = Flux de carbone Fco2-licor-tmp 
Comment = unité mmol/m2/s 
Comment = 2 chn statistics From Time = To Time = 
Signal = w-sonic Signal = co2-licor 
Storage Label Covariance = wco2-cov 
Storage Label Correlation = 
Storage Label Flux = Fco2-licor-tmp 
Flux coefficient = 1 
Comments 
Comment = Conversion de Fco2-licor-tmp 
Comment = entree mmol/m3 
Comment = sortie umol/m3 
User defined From Time = To Time = 
Storage Label = Fco2-licor-tmp2 
Apply to = 
Apply by = 
Equation = 1000*Fco2-licor-tmp 
Variable = Fco2-licor-tmp 
Comments 
Comment = Calcul du flux de quantité de
mouvement Comment = 
Comment = 
2 chn statistics From Time = To Time = 
Signal = w-sonic Signal = u-sonic
Storage Label Covariance = uw-cov 
Storage Label Correlation = 
Storage Label Flux = momentum-sonic 
Flux coefficient = rho-meteo 
Comments 
Comment = u-sonic* Vitesse de frottement 
Comment = Comment = U star 
From Time = To Time = 
Storage Label = U-star 
Apply to = 
Apply by = 
uw covariance (m2/s2) = uw-cov 
Min or QC = Max or QC = Virtual temperature 
From Time = To Time = 
Storage Label = T-virtual 
Apply to = 
Apply by = 
Vapour pressure (Kpa) = e-vapor-meteo 
Min or QC = Max or QC = Temperature (C) = T-meteo 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = Comments 
Comment = Calcul Lo 
Comment = hauteur du sonique 4,95m 
Comment = hauteur végétation selon
relevé Omar Stability - Monin Obhukov 
From Time = To Time = 
Storage Label = stability 
Apply to = 
Apply by = 
Measurement height (m) = hauteur-sonic 
Zero plane displacement (m) = disp-height 
Virtual Temperature (C) = T-virtual 
Min or QC = Max or QC = H flux (W/m2) = H-sonic-tmp 
Min or QC = Max or QC = H flux coef, RhoCp = rhoCp-meteo 
Min or QC = Max or QC = Scaling velocity
(m/s) = U-star 
Min or QC = Max or QC = Comments 
Comment = Corrections spectrales 
Comment = 
Comment = 
Frequency response 
From Time = 
To Time = 
Storage Label = freq-corr-uw 
Apply to = 
Apply by = 
Correction type = UW 
Measurement height (m) = hauteur-sonic Zero plane
displacement (m) = disp-height Boundary layer
height (m) = 
Stability Z/L = stability 
Wind speed (m/s) = wind-sonic-speed-mean 
Sensor 1 Flow velocity (m/s) =
wind-sonic-speed-mean Sensor 1 Sampling
frequency (Hz) = Csat-sampleFreq Sensor 1 Low
pass filter type = Recursive 
Sensor 1 Low pass filter time conStant = 0.02 Sensor 1
High pass filter type = Recursive Sensor 1
High pass filter time conStant = 600 Sensor 1 path length
(m) = Csat-path 
Sensor 1 Time conStant (s) = Csat-TimeConStant Sensor 1 Tube
attenuation coef = 
Sensor 2 Flow velocity (m/s) =
wind-sonic-speed-mean Sensor 2 Sampling
frequency (Hz) = Csat-SampleFreq Sensor 2 Low
pass filter type = Recursive 
Sensor 2 Low pass filter time conStant = 0.02 Sensor 2
High pass filter type = Recursive Sensor 2
High pass filter time conStant = 600 Sensor 2 path length
(m) = Csat-path 
Sensor 2 Time conStant (s) = Csat-TimeConStant Sensor 2 Tube
attenuation coef = 
path separation (m) = wT-hor-path-sep Get spectral data
type = Model 
Get response function from = model 
Reference tag = 
Reference response condition = 
Sensor 1 subsampled = 
Sensor 2 subsampled = 
Apply velocity distribution adjustment =
Use calculated distribution = 
Velocity distribution std dev= 
Stability distribution std dev= 
Frequency response 
From Time = 
To Time = 
Storage Label = freq-corr-tw 
Apply to = 
Apply by = 
Correction type = WX 
Measurement height (m) = hauteur-sonic Zero plane
displacement (m) = disp-height Boundary layer
height (m) = 
Stability Z/L = stability 
Wind speed (m/s) = wind-sonic-speed-mean 
Sensor 1 Flow velocity (m/s) =
wind-sonic-speed-mean Sensor 1 Sampling
frequency (Hz) = Csat-SampleFreq Sensor 1 Low
pass filter type = Recursive 
Sensor 1 Low pass filter time conStant = 0.02 Sensor 1
High pass filter type = Recursive Sensor 1
High pass filter time conStant = 600 Sensor 1 path length
(m) = Csat-path 
Sensor 1 Time conStant (s) = Csat-TimeConStant Sensor 1 Tube
attenuation coef = 
Sensor 2 Flow velocity (m/s) =
wind-sonic-speed-mean Sensor 2 Sampling
frequency (Hz) = Csat-SampleFreq Sensor 2 Low
pass filter type = Recursive 
Sensor 2 Low pass filter time conStant = 0.02 Sensor 2
High pass filter type = Recursive Sensor 2
High pass filter time conStant = 600 Sensor 2 path length
(m) = Csat-path 
Sensor 2 Time conStant (s) = Csat-TimeConStant Sensor 2 Tube
attenuation coef = 
path separation (m) = wT-hor-path-sep Get spectral data
type = Model 
Get response function from = model 
Reference tag = 
Reference response condition = 
Sensor 1 subsampled = 
Sensor 2 subsampled = 
Apply velocity distribution adjustment =
Use calculated distribution = 
Velocity distribution std dev= 
Stability distribution std dev= 
Comments 
Comment = Calcul de la séparation latérale Comment
= 
Comment = 
User defined 
From Time = 
To Time = 
Storage Label = lat-path-sep 
Apply to = 
Apply by = 
Equation =
SQRT((wx-hor-path-sep*sin(Wind-sonic-Direction-ang-soniclicor))*
(wx-hor-path-sep*sin(Wind-sonic-Direction-ang-sonic-licor))-Fwxver-path-sep*wx-ver-path-sep) 
Variable = wx-hor-path-sep Variable = Wind-sonic-Direction 
Variable = ang-sonic-licor Variable =
wx-ver-path-sep Frequency response 
From Time = 
To Time = 
Storage Label = freq-corr-7500 
Apply to = 
Apply by = 
Correction type = WX 
Measurement height (m) = hauteur-sonic 
Zero plane displacement (m) = disp-height 
Boundary layer height (m) =
Stability Z/L = stability 
Wind speed (m/s) = wind-sonic-speed-mean 
Sensor 1 Flow velocity (m/s) =
wind-sonic-speed-mean 
Sensor 1 Sampling frequency (Hz)
= Csat-SampleFreq 
Sensor 1 Low pass filter type = Recursive 
Sensor 1 Low pass filter time conStant = 0.02 
Sensor 1 High pass filter type =
Recursive 
Sensor 1 High pass filter time conStant = 600 
Sensor 1 path length (m) = Csat-path 
Sensor 1 Time conStant (s) = Csat-TimeConStant 
Sensor 1 Tube attenuation coef = 
Sensor 2 Flow velocity (m/s) =
wind-sonic-speed-mean 
Sensor 2 Sampling frequency (Hz)
= Licor7500-SampleFreq 
Sensor 2 Low pass filter type = Recursive 
Sensor 2 Low pass filter time conStant = 0.02 
Sensor 2 High pass filter type =
Recursive 
Sensor 2 High pass filter time conStant = 600 
Sensor 2 path length (m) = Licor7500-path 
Sensor 2 Time conStant (s) = Licor7500-TimeConStant 
Sensor 2 Tube attenuation coef = 
path separation (m) = lat-path-sep 
Get spectral data type = Model 
Get response function from = model 
Reference tag = 
Reference response condition = 
Sensor 1 subsampled = Sensor 2 subsampled = Apply
velocity distribution adjustment = 
Use calculated distribution = Velocity distribution
std dev= 
Stability distribution std dev= 
Mathematical operation From Time = 
To Time = 
Storage Label = uw-cov-fc Apply to = 
Apply by = 
Measured variable A = uw-cov 
Operation = * 
Measured variable B = freq-corr-uw 
Mathematical operation From Time = 
To Time = 
Storage Label = U-star-fc Apply to = 
Apply by = 
Measured variable A = U-star 
Operation = * 
Measured variable B = freq-corr-uw 
Mathematical operation From Time = 
To Time = 
Storage Label = Fco2-licor-fc Apply to = 
Apply by = 
Measured variable A = Fco2-licor-tmp 
Operation = * 
Measured variable B = freq-corr-7500 
Mathematical operation From Time = 
To Time = 
Storage Label = H-sonic-fc Apply to = 
Apply by = 
Measured variable A = H-sonic-tmp 
Operation = * 
Measured variable B = freq-corr-tw 
Mathematical operation From Time = 
To Time = 
Storage Label = E-licor-fc Apply to = 
Apply by = 
Measured variable A = E-licor-tmp 
Operation = * 
Measured variable B = freq-corr-7500 
Mathematical operation 
From Time = To Time = 
Storage Label = LE-licor-fc 
Apply to = 
Apply by = 
Measured variable A = LE-licor-tmp 
Operation = * 
Measured variable B = freq-corr-7500 
Comments 
Comment = Correction de Webb pour la vapeur d'eau Comment = 
Comment = Webb correction From Time = To Time = 
Storage Label = LE-licor-webb 
Apply to = 
Apply by = 
Scalar value type = Density
(g/m3) 
Scalar value = q-meteo 
Min or QC = Max or QC = 
Water vapour value type = partial Pressure (kpa) Water
vapour value = e-vapor-meteo 
Min or QC = Max or QC = Temperature (C) = T-sonic-cor 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = H flux (W/m2) = H-sonic-fc 
Min or QC = Max or QC = LE flux (W/m2) = LE-licor-fc 
Min or QC = Max or QC = H flux coef, RhoCp = rhoCp-meteo 
Min or QC = Max or QC = LE flux coef, L = L-licor 
Min or QC = Max or QC = Scalar molecular wt. = 18 
Scalar flux type = LE (W/m2) 
Scalar flux coefficient = 1 
Min or QC = Max or QC = Alternate water vapour pressure (kpa)
= 
Alternate temperature (C) = 
Alternate pressure (kpa) = 
User defined From Time = To Time = 
Storage Label = LE-licor-Q0 
Apply to = 
Apply by = 
Equation = LE-licor-tmp-fLE-licor-webb 
Variable = LE-licor-tmp 
Variable = LE-licor-webb 
Variable = 
Variable = 
Variable = 
Comments 
Comment = Correction de Webb pour le co2 Comment = entrée
en mmol/m2/s 
Comment = sortie en umol/m2/s 
Webb correction From Time = To Time = 
Storage Label = Fco2-licor-webb 
Apply to = 
Apply by = 
Scalar value type = Density
(mg/m3) 
Scalar value = co2-licor-mean 
Min or QC = Max or QC = 
Water vapour value type = partial Pressure (kpa) Water
vapour value = e-vapor-meteo 
Min or QC = Max or QC = Temperature (C) = T-sonic-cor 
Min or QC = Max or QC = Pressure (Kpa) = P-meteo 
Min or QC = Max or QC = H flux (W/m2) = H-sonic-fc 
Min or QC = Max or QC = LE flux (W/m2) = LE-licor-Q0 
Min or QC = Max or QC = 
From Time = 
To Time = 
Left Axis Value = H-sonic-Q0 Right Axis Value =
H-sonic-tmp 
Left Axis Minimum = -100 Left Axis Maximum = 500
Right Axis Minimum = -100 Right Axis Maximum = 500 Match
Left/Right Axes = Plot Value 
From Time = 
To Time = 
Left Axis Value = LE-licor-Q0 Right Axis Value =
LE-licor-tmp 
Left Axis Minimum = -200 Left Axis Maximum = 800
Right Axis Minimum = -200 Right Axis Maximum = 800 Match
Left/Right Axes = Plot Value 
From Time = 
To Time = 
Left Axis Value = Fco2-licor-Q0 
Right Axis Value = Fco2-licor-tmp2 
Left Axis Minimum = -20 Left Axis Maximum = 20
Right Axis Minimum = -20 Right Axis Maximum = 20 Match
Left/Right Axes = Plot Value 
From Time = 
To Time = 
Left Axis Value = q-licor-mean Right
Axis Value = T-sonic-cor Left Axis Minimum = 0 
Left Axis Maximum = 25  
Axis Minimum = 10  
Right Axis Maximum = 50 Match Left/Right
Axes = Plot Value 
From Time = 
To Time = 
Left Axis Value = beta Right Axis Value =
gamma Left Axis Minimum = 
Left Axis Maximum = Right Axis Minimum =
Right Axis Maximum = Match Left/Right Axes = Plot
Value 
From Time = 
To Time = 
Left Axis Value = spike-T Right Axis Value =
spike-q Left Axis Minimum = 
Left Axis Maximum = Right Axis Minimum =
Right Axis Maximum = Match Left/Right Axes = 
H flux coef, RhoCp = rhoCp-meteo 
Min or QC = 
Max or QC = 
LE flux coef, L = L-meteo 
Min or QC = 
Max or QC = 
Scalar molecular wt. = 44 
Scalar flux type = Fx (umol/m2/s) 
Scalar flux coefficient = 1 
Min or QC = 
Max or QC = 
Alternate water vapour pressure (kpa) = 
Alternate temperature (C) = 
Alternate pressure (kpa) = 
User defined From Time = 
To Time = 
Storage Label = Fco2-licor-Q0 
Apply to = Apply by = 
Equation = Fco2-licor-tmp2-f-Fco2-licor-webb Variable
= Fco2-licor-tmp2 
Variable = Fco2-licor-webb 
Variable = Variable = Variable = Comments 
Comment = Calcul du flux de chaleur sensible corrige
Comment = 
Comment = User defined From Time = 
To Time = 
Storage Label = H-sonic-Q0 
Apply to = Apply by =
Equation =
H-sonic-fc-(0.32*rhoCp-meteo*LE-licor-Q0*(T-sonic-mean+273.15)* 
Right 
(T-sonic-cor--273.15))/(216.5*P-meteo*10*L-meteo) Variable =
H-sonic-fc 
Variable = rhoCp-meteo 
Variable = LE-licor-Q0 
Variable = T-sonic-mean 
Variable = T-sonic-cor 
Variable = P-meteo 
Variable = L-meteo 
Comments 
Comment = Test de Stationarite 
Comment = Critère de qualite 
Comment = 
Stationarity 
From Time = 
To Time = 
Signal (A) = u-sonic 
Signal (B) = w-sonic 
Storage Label A StdDev Stationarity =
u-stat Storage Label B StdDev Stationarity = w-stat
Storage Label AB Covariance Stationarity = uw-stat
Segment length, minutes = 5 
Linear detrend segments = 
Linear detrend run = 
Stationarity 
From Time = 
To Time = 
Signal (A) = co2-licor 
Signal (B) = w-sonic 
Storage Label A StdDev Stationarity =
Storage Label B StdDev Stationarity = 
Storage Label AB Covariance Stationarity =
co2w-stat Segment length, minutes = 5 
Linear detrend segments = 
Linear detrend run = 
Stationarity 
From Time = 
To Time = 
Signal (A) = q-licor 
Signal (B) = w-sonic 
Storage Label A StdDev Stationarity =
Storage Label B StdDev Stationarity = 
Storage Label AB Covariance Stationarity =
qw-Stat Segment length, minutes = 5 
Linear detrend segments = 
Linear detrend run = 
Stationarity 
From Time = 
To Time = 
Signal (A) = T-sonic 
Signal (B) = w-sonic 
Storage Label A StdDev Stationarity =
Storage Label B StdDev Stationarity = 
Storage Label AB Covariance Stationarity =
tsw-Stat Segment length, minutes = 5 
Linear detrend segments = 
Linear detrend run = 
Plot Value 
.3 Annexe 2 Description des installations 
 |