WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Les déterminants de la qualité de l'habitat à Kinshasa. Approche par le modèle Biprobit (Probit Bivarié)

( Télécharger le fichier original )
par Christian OTCHIA SAMEN
Université de Kinshasa (UNIKIN) - Licencié en économie mathématique 2006
  

précédent sommaire suivant

Extinction Rebellion

ANNEXES

. biprobit IQS IQI PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Bivariate probit regression Number of obs = 802

Wald chi2(30) = 229.19

Log likelihood = -719.18279 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

IQS |

PAUVRE | -.352008 .1325887 -2.65 0.008 -.611877 -.092139

M_EFFORT | 4.46e-06 8.08e-07 5.51 0.000 2.87e-06 6.04e-06

NETUDE2 | .0913988 .1539762 0.59 0.553 -.2103889 .3931865

NETUDE3 | -.1069213 .3659873 -0.29 0.770 -.8242433 .6104007

NETUDE4 | .1628033 .2093816 0.78 0.437 -.2475772 .5731837

LOC3 | -.3321874 .1703905 -1.95 0.051 -.6661467 .0017719

MPROM | .003398 .027552 0.12 0.902 -.0506029 .057399

STATUT2 | .1162616 .2588931 0.45 0.653 -.3911596 .6236828

STATUT3 | .393065 .2460161 1.60 0.110 -.0891176 .8752477

GENRE2 | .4277027 .3148316 1.36 0.174 -.189356 1.044761

GENRE3 | .1784031 .2324278 0.77 0.443 -.2771471 .6339533

GENRE4 | .0671506 .3078579 0.22 0.827 -.5362399 .6705411

TYPEH4 | -.2734055 .3098836 -0.88 0.378 -.8807661 .3339552

TYPEH5 | .2132881 .5531629 0.39 0.700 -.8708912 1.297467

TYPEH6 | -.6389286 .3427922 -1.86 0.062 -1.310789 .0329318

_cons | 1.521197 .4330525 3.51 0.000 .6724301 2.369965

-------------+----------------------------------------------------------------

IQI |

PAUVRE | -.312502 .1243213 -2.51 0.012 -.5561673 -.0688366

M_EFFORT | 9.40e-07 2.48e-07 3.80 0.000 4.55e-07 1.43e-06

NETUDE2 | .4888503 .1716514 2.85 0.004 .1524198 .8252808

NETUDE3 | .8892736 .304487 2.92 0.003 .2924901 1.486057

NETUDE4 | .7430802 .1918359 3.87 0.000 .3670886 1.119072

LOC3 | -.5812157 .116692 -4.98 0.000 -.8099278 -.3525035

MPROM | -.0345196 .0259731 -1.33 0.184 -.085426 .0163868

STATUT2 | .232002 .2416376 0.96 0.337 -.241599 .705603

STATUT3 | .3609945 .2365828 1.53 0.127 -.1026994 .8246884

GENRE2 | -.023685 .2787394 -0.08 0.932 -.5700042 .5226342

GENRE3 | .1352361 .2266918 0.60 0.551 -.3090717 .5795438

GENRE4 | .1899455 .2888327 0.66 0.511 -.3761561 .7560471

TYPEH4 | -.1779087 .2054848 -0.87 0.387 -.5806516 .2248341

TYPEH5 | .4853476 .2923156 1.66 0.097 -.0875805 1.058276

TYPEH6 | -.5059752 .2641893 -1.92 0.055 -1.023777 .0118263

_cons | -.6801188 .3623371 -1.88 0.061 -1.390286 .0300489

-------------+----------------------------------------------------------------

/athrho | .2837643 .0923895 3.07 0.002 .1026842 .4648444

-------------+----------------------------------------------------------------

rho | .2763854 .085332 .1023248 .4340243

------------------------------------------------------------------------------

Likelihood-ratio test of rho=0: chi2(1) = 9.75604 Prob > chi2 = 0.0018

. test NETUDE2 NETUDE3 NETUDE4

( 1) [IQS]NETUDE2 = 0

( 2) [IQI]NETUDE2 = 0

( 3) [IQS]NETUDE3 = 0

( 4) [IQI]NETUDE3 = 0

( 5) [IQS]NETUDE4 = 0

( 6) [IQI]NETUDE4 = 0

chi2( 6) = 17.98

Prob > chi2 = 0.0063

. test STATUT2 STATUT3

( 1) [IQS]STATUT2 = 0

( 2) [IQI]STATUT2 = 0

( 3) [IQS]STATUT3 = 0

( 4) [IQI]STATUT3 = 0

chi2( 4) = 7.81

Prob > chi2 = 0.0986

. test GENRE2 GENRE3 GENRE4

( 1) [IQS]GENRE2 = 0

( 2) [IQI]GENRE2 = 0

( 3) [IQS]GENRE3 = 0

( 4) [IQI]GENRE3 = 0

( 5) [IQS]GENRE4 = 0

( 6) [IQI]GENRE4 = 0

chi2( 6) = 3.60

Prob > chi2 = 0.7307

. test TYPEH4 TYPEH5 TYPEH6

( 1) [IQS]TYPEH4 = 0

( 2) [IQI]TYPEH4 = 0

( 3) [IQS]TYPEH5 = 0

( 4) [IQI]TYPEH5 = 0

( 5) [IQS]TYPEH6 = 0

( 6) [IQI]TYPEH6 = 0

chi2( 6) = 18.00

Prob > chi2 = 0.0062

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 . -719.1828 33 1504.366 1659.04

------------------------------------------------------------------------------

. estat summarize

Estimation sample biprobit Number of obs = 802

-------------------------------------------------------------

Variable | Mean Std. Dev. Min Max

-------------+-----------------------------------------------

IQS | .8229426 .3819554 0 1

IQI | .3503741 .4773848 0 1

PAUVRE | .3067332 .4614254 0 1

M_EFFORT | 3623.385 441724.5 -231860 7.8e+06

NETUDE2 | .5710723 .4952318 0 1

NETUDE3 | .032419 .1772206 0 1

NETUDE4 | .2468828 .431467 0 1

LOC3 | .6845387 .4649893 0 1

MPROM | .0002813 2.258075 -3.63093 11.2024

STATUT2 | .3840399 .4866709 0 1

STATUT3 | .5448878 .4982918 0 1

GENRE2 | .0935162 .2913362 0 1

GENRE3 | .7793017 .4149762 0 1

GENRE4 | .0723192 .2591773 0 1

TYPEH4 | .7605985 .4269845 0 1

TYPEH5 | .0573566 .2326678 0 1

TYPEH6 | .0947631 .2930702 0 1

-------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after biprobit

y = Pr(IQS=1,IQI=1) (predict)

= .3218205

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.1134412 .04007 -2.83 0.005 -.191977 -.034905 .306733

M_EFFORT | 4.39e-07 .00000 4.70 0.000 2.6e-07 6.2e-07 3623.39

NETUDE2*| .1674786 .05632 2.97 0.003 .057096 .277861 .571072

NETUDE3*| .3142797 .10794 2.91 0.004 .102721 .525839 .032419

NETUDE4*| .2727488 .06995 3.90 0.000 .135651 .409847 .246883

LOC3*| -.2161857 .04274 -5.06 0.000 -.299959 -.132412 .684539

MPROM | -.0118528 .00909 -1.30 0.192 -.029668 .005962 .000281

STATUT2*| .084071 .08592 0.98 0.328 -.084334 .252476 .38404

STATUT3*| .1333087 .08011 1.66 0.096 -.023711 .290329 .544888

GENRE2*| -.000431 .09881 -0.00 0.997 -.194105 .193243 .093516

GENRE3*| .0504816 .07591 0.67 0.506 -.098302 .199265 .779302

GENRE4*| .0696082 .10722 0.65 0.516 -.140539 .279756 .072319

TYPEH4*| -.0695398 .07518 -0.93 0.355 -.216883 .077803 .760599

TYPEH5*| .1851111 .11394 1.62 0.104 -.038201 .408423 .057357

TYPEH6*| -.1702348 .06727 -2.53 0.011 -.302082 -.038388 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after biprobit

y = Pr(IQS=1,IQI=1) (predict)

= .3218205

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0359179 .01329 -2.70 0.007 -.06197 -.009866 .306733

M_EFFORT | .0015913 .00034 4.70 0.000 .000927 .002255 3623.39

NETUDE2 | .0978961 .03399 2.88 0.004 .031271 .164521 .571072

NETUDE3 | .0098829 .00345 2.86 0.004 .003112 .016653 .032419

NETUDE4 | .0644825 .01644 3.92 0.000 .032254 .096711 .246883

LOC3 | -.1434349 .02804 -5.12 0.000 -.198386 -.088483 .684539

MPROM | -3.33e-06 .00000 -1.30 0.192 -8.3e-06 1.7e-06 .000281

STATUT2 | .0319603 .03241 0.99 0.324 -.031562 .095482 .38404

STATUT3 | .0735173 .04502 1.63 0.102 -.014713 .161747 .544888

GENRE2 | .0002575 .00914 0.03 0.978 -.01766 .018175 .093516

GENRE3 | .0400108 .06184 0.65 0.518 -.081194 .161215 .779302

GENRE4 | .0048756 .00732 0.67 0.505 -.009462 .019213 .072319

TYPEH4 | -.052126 .05489 -0.95 0.342 -.159712 .05546 .760599

TYPEH5 | .0099418 .00593 1.68 0.094 -.001687 .02157 .057357

TYPEH6 | -.0181339 .00876 -2.07 0.038 -.035297 -.000971 .094763

------------------------------------------------------------------------------

. probit IQS PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Probit regression Number of obs = 802

LR chi2(15) = 141.39

Prob > chi2 = 0.0000

Log likelihood = -303.76093 Pseudo R2 = 0.1888

------------------------------------------------------------------------------

IQS | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

PAUVRE | -.3361712 .1330708 -2.53 0.012 -.5969852 -.0753572

M_EFFORT | 4.69e-06 8.18e-07 5.74 0.000 3.09e-06 6.29e-06

NETUDE2 | .0968035 .153961 0.63 0.530 -.2049546 .3985615

NETUDE3 | -.045758 .3705613 -0.12 0.902 -.7720448 .6805288

NETUDE4 | .2045312 .2094031 0.98 0.329 -.2058914 .6149538

LOC3 | -.3021582 .1702894 -1.77 0.076 -.6359192 .0316028

MPROM | .0058747 .0276861 0.21 0.832 -.048389 .0601385

STATUT2 | .1089448 .258726 0.42 0.674 -.3981487 .6160384

STATUT3 | .4066412 .2454672 1.66 0.098 -.0744656 .8877481

GENRE2 | .4237278 .315327 1.34 0.179 -.1943017 1.041757

GENRE3 | .1597309 .2332499 0.68 0.493 -.2974305 .6168923

GENRE4 | .083946 .3111837 0.27 0.787 -.5259628 .6938548

TYPEH4 | -.2568133 .312542 -0.82 0.411 -.8693845 .3557578

TYPEH5 | .2565094 .5752346 0.45 0.656 -.8709297 1.383948

TYPEH6 | -.6287403 .3450195 -1.82 0.068 -1.304966 .0474856

_cons | 1.495613 .4376921 3.42 0.001 .6377519 2.353473

------------------------------------------------------------------------------

Note: 0 failures and 20 successes completely determined.

. test NETUDE2 NETUDE3 NETUDE4

( 1) NETUDE2 = 0

( 2) NETUDE3 = 0

( 3) NETUDE4 = 0

chi2( 3) = 1.12

Prob > chi2 = 0.7715

. test STATUT2 STATUT3

( 1) STATUT2 = 0

( 2) STATUT3 = 0

chi2( 2) = 6.25

Prob > chi2 = 0.0440

. test GENRE2 GENRE3 GENRE4

( 1) GENRE2 = 0

( 2) GENRE3 = 0

( 3) GENRE4 = 0

chi2( 3) = 2.05

Prob > chi2 = 0.5624

. test TYPEH4 TYPEH5 TYPEH6

( 1) TYPEH4 = 0

( 2) TYPEH5 = 0

( 3) TYPEH6 = 0

chi2( 3) = 6.54

Prob > chi2 = 0.0880

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 -374.4554 -303.7609 16 639.5219 714.5156

------------------------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after probit

y = Pr(IQS) (predict)

= .93323711

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.0481097 .02299 -2.09 0.036 -.093164 -.003055 .306733

M_EFFORT | 6.07e-07 .00000 9.12 0.000 4.8e-07 7.4e-07 3623.39

NETUDE2*| .0126671 .02045 0.62 0.536 -.027405 .052739 .571072

NETUDE3*| -.0061159 .05111 -0.12 0.905 -.106292 .09406 .032419

NETUDE4*| .0245252 .02345 1.05 0.296 -.021437 .070488 .246883

LOC3*| -.036113 .02014 -1.79 0.073 -.075594 .003368 .684539

MPROM | .0007605 .00359 0.21 0.832 -.006268 .007789 .000281

STATUT2*| .0138459 .03269 0.42 0.672 -.050227 .077919 .38404

STATUT3*| .0545345 .03565 1.53 0.126 -.015329 .124398 .544888

GENRE2*| .0422942 .02425 1.74 0.081 -.005234 .089822 .093516

GENRE3*| .022113 .03468 0.64 0.524 -.045856 .090082 .779302

GENRE4*| .0102945 .03613 0.28 0.776 -.060526 .081115 .072319

TYPEH4*| -.0301212 .03311 -0.91 0.363 -.095013 .03477 .760599

TYPEH5*| .0279465 .05164 0.54 0.588 -.073261 .129154 .057357

TYPEH6*| -.1164904 .08565 -1.36 0.174 -.284361 .05138 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after probit

y = Pr(IQS) (predict)

= .93323711

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0133483 .00593 -2.25 0.024 -.024964 -.001733 .306733

M_EFFORT | .0022008 .00024 9.12 0.000 .001728 .002674 3623.39

NETUDE2 | .0071563 .01142 0.63 0.531 -.015234 .029547 .571072

NETUDE3 | -.000192 .00156 -0.12 0.902 -.00324 .002856 .032419

NETUDE4 | .0065367 .00674 0.97 0.332 -.006676 .019749 .246883

LOC3 | -.0267755 .01597 -1.68 0.094 -.058086 .004534 .684539

MPROM | 2.14e-07 .00000 0.21 0.832 -1.8e-06 2.2e-06 .000281

STATUT2 | .0054161 .01302 0.42 0.677 -.020093 .030925 .38404

STATUT3 | .028683 .01807 1.59 0.112 -.006732 .064098 .544888

GENRE2 | .0051296 .00387 1.33 0.185 -.002452 .012711 .093516

GENRE3 | .0161139 .02371 0.68 0.497 -.030357 .062584 .779302

GENRE4 | .0007859 .00292 0.27 0.788 -.00493 .006502 .072319

TYPEH4 | -.0252859 .03072 -0.82 0.410 -.085486 .034914 .760599

TYPEH5 | .0019046 .00426 0.45 0.655 -.00644 .010249 .057357

TYPEH6 | -.0077129 .00439 -1.76 0.079 -.016326 .000901 .094763

------------------------------------------------------------------------------

. probit IQI PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Probit regression Number of obs = 802

LR chi2(15) = 198.28

Prob > chi2 = 0.0000

Log likelihood = -420.29988 Pseudo R2 = 0.1909

------------------------------------------------------------------------------

IQI | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

PAUVRE | -.309579 .1243907 -2.49 0.013 -.5533803 -.0657778

M_EFFORT | 9.40e-07 2.48e-07 3.79 0.000 4.54e-07 1.43e-06

NETUDE2 | .4952073 .1720466 2.88 0.004 .1580022 .8324123

NETUDE3 | .8976417 .3052243 2.94 0.003 .299413 1.49587

NETUDE4 | .7463351 .1919883 3.89 0.000 .3700449 1.122625

LOC3 | -.5817448 .1167157 -4.98 0.000 -.8105033 -.3529863

MPROM | -.0342869 .0260656 -1.32 0.188 -.0853746 .0168008

STATUT2 | .2161808 .2410807 0.90 0.370 -.2563287 .6886902

STATUT3 | .3544155 .2359466 1.50 0.133 -.1080312 .8168623

GENRE2 | .0047049 .2798087 0.02 0.987 -.5437102 .55312

GENRE3 | .1574288 .2287225 0.69 0.491 -.2908591 .6057167

GENRE4 | .2123179 .2914418 0.73 0.466 -.3588976 .7835334

TYPEH4 | -.1852043 .2046241 -0.91 0.365 -.5862601 .2158516

TYPEH5 | .4806323 .2923771 1.64 0.100 -.0924163 1.053681

TYPEH6 | -.4964143 .2625991 -1.89 0.059 -1.011099 .0182706

_cons | -.692406 .3645227 -1.90 0.058 -1.406857 .0220454

------------------------------------------------------------------------------

Note: 0 failures and 1 success completely determined.

. test NETUDE2 NETUDE3 NETUDE4

( 1) NETUDE2 = 0

( 2) NETUDE3 = 0

( 3) NETUDE4 = 0

chi2( 3) = 17.35

Prob > chi2 = 0.0006

. test STATUT2 STATUT3

( 1) STATUT2 = 0

( 2) STATUT3 = 0

chi2( 2) = 3.05

Prob > chi2 = 0.2172

. test GENRE2 GENRE3 GENRE4

( 1) GENRE2 = 0

( 2) GENRE3 = 0

( 3) GENRE4 = 0

chi2( 3) = 1.31

Prob > chi2 = 0.7264

. test TYPEH4 TYPEH5 TYPEH6

( 1) TYPEH4 = 0

( 2) TYPEH5 = 0

( 3) TYPEH6 = 0

chi2( 3) = 12.64

Prob > chi2 = 0.0055

. predict probiqi

(option p assumed; Pr(IQI))

(1279 missing values generated)

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 -519.4377 -420.2999 16 872.5998 947.5935

------------------------------------------------------------------------------

. estat summarize

Estimation sample probit Number of obs = 802

-------------------------------------------------------------

Variable | Mean Std. Dev. Min Max

-------------+-----------------------------------------------

IQI | .3503741 .4773848 0 1

PAUVRE | .3067332 .4614254 0 1

M_EFFORT | 3623.385 441724.5 -231860 7.8e+06

NETUDE2 | .5710723 .4952318 0 1

NETUDE3 | .032419 .1772206 0 1

NETUDE4 | .2468828 .431467 0 1

LOC3 | .6845387 .4649893 0 1

MPROM | .0002813 2.258075 -3.63093 11.2024

STATUT2 | .3840399 .4866709 0 1

STATUT3 | .5448878 .4982918 0 1

GENRE2 | .0935162 .2913362 0 1

GENRE3 | .7793017 .4149762 0 1

GENRE4 | .0723192 .2591773 0 1

TYPEH4 | .7605985 .4269845 0 1

TYPEH5 | .0573566 .2326678 0 1

TYPEH6 | .0947631 .2930702 0 1

-------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after probit

y = Pr(IQI) (predict)

= .33295741

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.1091167 .04211 -2.59 0.010 -.191652 -.026582 .306733

M_EFFORT | 3.41e-07 .00000 3.73 0.000 1.6e-07 5.2e-07 3623.39

NETUDE2*| .1757471 .05868 2.99 0.003 .060729 .290765 .571072

NETUDE3*| .3464156 .11063 3.13 0.002 .129586 .563245 .032419

NETUDE4*| .2829009 .07244 3.91 0.000 .140931 .424871 .246883

LOC3*| -.217439 .04386 -4.96 0.000 -.303402 -.131476 .684539

MPROM | -.0124612 .00947 -1.32 0.188 -.031023 .006101 .000281

STATUT2*| .0792694 .08892 0.89 0.373 -.095012 .253551 .38404

STATUT3*| .1273767 .08339 1.53 0.127 -.03607 .290824 .544888

GENRE2*| .0017113 .10186 0.02 0.987 -.197931 .201354 .093516

GENRE3*| .0560406 .07957 0.70 0.481 -.099918 .211999 .779302

GENRE4*| .0797871 .11253 0.71 0.478 -.140764 .300338 .072319

TYPEH4*| -.068564 .07696 -0.89 0.373 -.219403 .082275 .760599

TYPEH5*| .1854992 .11602 1.60 0.110 -.041904 .412902 .057357

TYPEH6*| -.1610999 .07343 -2.19 0.028 -.305011 -.017189 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after probit

y = Pr(IQI) (predict)

= .33295741

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0345114 .01381 -2.50 0.012 -.061579 -.007444 .306733

M_EFFORT | .0012374 .00033 3.73 0.000 .000588 .001887 3623.39

NETUDE2 | .1027799 .03547 2.90 0.004 .033263 .172297 .571072

NETUDE3 | .0105763 .00358 2.95 0.003 .003558 .017595 .032419

NETUDE4 | .066966 .01708 3.92 0.000 .033491 .100441 .246883

LOC3 | -.1447306 .02895 -5.00 0.000 -.201467 -.087994 .684539

MPROM | -3.51e-06 .00000 -1.32 0.188 -8.7e-06 1.7e-06 .000281

STATUT2 | .0301733 .03361 0.90 0.369 -.035707 .096053 .38404

STATUT3 | .0701859 .04667 1.50 0.133 -.021285 .161657 .544888

GENRE2 | .0001599 .00951 0.02 0.987 -.018479 .018799 .093516

GENRE3 | .0445882 .06477 0.69 0.491 -.082353 .171529 .779302

GENRE4 | .0055805 .00766 0.73 0.466 -.009432 .020593 .072319

TYPEH4 | -.051196 .05656 -0.91 0.365 -.162052 .05966 .760599

TYPEH5 | .010019 .00611 1.64 0.101 -.001947 .021985 .057357

TYPEH6 | -.0170967 .00903 -1.89 0.058 -.034795 .000602 .094763

------------------------------------------------------------------------------

1: AFC entre les types de matériau des murs et le type de quartiers

2: AFC entre le type de matériau de la toiture des logements et le type de quartiers

3: AFC entre le type de matériau du pavement des logements et le type de quartiers

4: AFC entre le type de toilettes utilisées et le type de quartiers

précédent sommaire suivant






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"Entre deux mots il faut choisir le moindre"   Paul Valery