WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Les déterminants de la qualité de l'habitat à Kinshasa. Approche par le modèle Biprobit (Probit Bivarié)

( Télécharger le fichier original )
par Christian OTCHIA SAMEN
Université de Kinshasa (UNIKIN) - Licencié en économie mathématique 2006
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

. biprobit IQS IQI PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Bivariate probit regression Number of obs = 802

Wald chi2(30) = 229.19

Log likelihood = -719.18279 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

IQS |

PAUVRE | -.352008 .1325887 -2.65 0.008 -.611877 -.092139

M_EFFORT | 4.46e-06 8.08e-07 5.51 0.000 2.87e-06 6.04e-06

NETUDE2 | .0913988 .1539762 0.59 0.553 -.2103889 .3931865

NETUDE3 | -.1069213 .3659873 -0.29 0.770 -.8242433 .6104007

NETUDE4 | .1628033 .2093816 0.78 0.437 -.2475772 .5731837

LOC3 | -.3321874 .1703905 -1.95 0.051 -.6661467 .0017719

MPROM | .003398 .027552 0.12 0.902 -.0506029 .057399

STATUT2 | .1162616 .2588931 0.45 0.653 -.3911596 .6236828

STATUT3 | .393065 .2460161 1.60 0.110 -.0891176 .8752477

GENRE2 | .4277027 .3148316 1.36 0.174 -.189356 1.044761

GENRE3 | .1784031 .2324278 0.77 0.443 -.2771471 .6339533

GENRE4 | .0671506 .3078579 0.22 0.827 -.5362399 .6705411

TYPEH4 | -.2734055 .3098836 -0.88 0.378 -.8807661 .3339552

TYPEH5 | .2132881 .5531629 0.39 0.700 -.8708912 1.297467

TYPEH6 | -.6389286 .3427922 -1.86 0.062 -1.310789 .0329318

_cons | 1.521197 .4330525 3.51 0.000 .6724301 2.369965

-------------+----------------------------------------------------------------

IQI |

PAUVRE | -.312502 .1243213 -2.51 0.012 -.5561673 -.0688366

M_EFFORT | 9.40e-07 2.48e-07 3.80 0.000 4.55e-07 1.43e-06

NETUDE2 | .4888503 .1716514 2.85 0.004 .1524198 .8252808

NETUDE3 | .8892736 .304487 2.92 0.003 .2924901 1.486057

NETUDE4 | .7430802 .1918359 3.87 0.000 .3670886 1.119072

LOC3 | -.5812157 .116692 -4.98 0.000 -.8099278 -.3525035

MPROM | -.0345196 .0259731 -1.33 0.184 -.085426 .0163868

STATUT2 | .232002 .2416376 0.96 0.337 -.241599 .705603

STATUT3 | .3609945 .2365828 1.53 0.127 -.1026994 .8246884

GENRE2 | -.023685 .2787394 -0.08 0.932 -.5700042 .5226342

GENRE3 | .1352361 .2266918 0.60 0.551 -.3090717 .5795438

GENRE4 | .1899455 .2888327 0.66 0.511 -.3761561 .7560471

TYPEH4 | -.1779087 .2054848 -0.87 0.387 -.5806516 .2248341

TYPEH5 | .4853476 .2923156 1.66 0.097 -.0875805 1.058276

TYPEH6 | -.5059752 .2641893 -1.92 0.055 -1.023777 .0118263

_cons | -.6801188 .3623371 -1.88 0.061 -1.390286 .0300489

-------------+----------------------------------------------------------------

/athrho | .2837643 .0923895 3.07 0.002 .1026842 .4648444

-------------+----------------------------------------------------------------

rho | .2763854 .085332 .1023248 .4340243

------------------------------------------------------------------------------

Likelihood-ratio test of rho=0: chi2(1) = 9.75604 Prob > chi2 = 0.0018

. test NETUDE2 NETUDE3 NETUDE4

( 1) [IQS]NETUDE2 = 0

( 2) [IQI]NETUDE2 = 0

( 3) [IQS]NETUDE3 = 0

( 4) [IQI]NETUDE3 = 0

( 5) [IQS]NETUDE4 = 0

( 6) [IQI]NETUDE4 = 0

chi2( 6) = 17.98

Prob > chi2 = 0.0063

. test STATUT2 STATUT3

( 1) [IQS]STATUT2 = 0

( 2) [IQI]STATUT2 = 0

( 3) [IQS]STATUT3 = 0

( 4) [IQI]STATUT3 = 0

chi2( 4) = 7.81

Prob > chi2 = 0.0986

. test GENRE2 GENRE3 GENRE4

( 1) [IQS]GENRE2 = 0

( 2) [IQI]GENRE2 = 0

( 3) [IQS]GENRE3 = 0

( 4) [IQI]GENRE3 = 0

( 5) [IQS]GENRE4 = 0

( 6) [IQI]GENRE4 = 0

chi2( 6) = 3.60

Prob > chi2 = 0.7307

. test TYPEH4 TYPEH5 TYPEH6

( 1) [IQS]TYPEH4 = 0

( 2) [IQI]TYPEH4 = 0

( 3) [IQS]TYPEH5 = 0

( 4) [IQI]TYPEH5 = 0

( 5) [IQS]TYPEH6 = 0

( 6) [IQI]TYPEH6 = 0

chi2( 6) = 18.00

Prob > chi2 = 0.0062

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 . -719.1828 33 1504.366 1659.04

------------------------------------------------------------------------------

. estat summarize

Estimation sample biprobit Number of obs = 802

-------------------------------------------------------------

Variable | Mean Std. Dev. Min Max

-------------+-----------------------------------------------

IQS | .8229426 .3819554 0 1

IQI | .3503741 .4773848 0 1

PAUVRE | .3067332 .4614254 0 1

M_EFFORT | 3623.385 441724.5 -231860 7.8e+06

NETUDE2 | .5710723 .4952318 0 1

NETUDE3 | .032419 .1772206 0 1

NETUDE4 | .2468828 .431467 0 1

LOC3 | .6845387 .4649893 0 1

MPROM | .0002813 2.258075 -3.63093 11.2024

STATUT2 | .3840399 .4866709 0 1

STATUT3 | .5448878 .4982918 0 1

GENRE2 | .0935162 .2913362 0 1

GENRE3 | .7793017 .4149762 0 1

GENRE4 | .0723192 .2591773 0 1

TYPEH4 | .7605985 .4269845 0 1

TYPEH5 | .0573566 .2326678 0 1

TYPEH6 | .0947631 .2930702 0 1

-------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after biprobit

y = Pr(IQS=1,IQI=1) (predict)

= .3218205

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.1134412 .04007 -2.83 0.005 -.191977 -.034905 .306733

M_EFFORT | 4.39e-07 .00000 4.70 0.000 2.6e-07 6.2e-07 3623.39

NETUDE2*| .1674786 .05632 2.97 0.003 .057096 .277861 .571072

NETUDE3*| .3142797 .10794 2.91 0.004 .102721 .525839 .032419

NETUDE4*| .2727488 .06995 3.90 0.000 .135651 .409847 .246883

LOC3*| -.2161857 .04274 -5.06 0.000 -.299959 -.132412 .684539

MPROM | -.0118528 .00909 -1.30 0.192 -.029668 .005962 .000281

STATUT2*| .084071 .08592 0.98 0.328 -.084334 .252476 .38404

STATUT3*| .1333087 .08011 1.66 0.096 -.023711 .290329 .544888

GENRE2*| -.000431 .09881 -0.00 0.997 -.194105 .193243 .093516

GENRE3*| .0504816 .07591 0.67 0.506 -.098302 .199265 .779302

GENRE4*| .0696082 .10722 0.65 0.516 -.140539 .279756 .072319

TYPEH4*| -.0695398 .07518 -0.93 0.355 -.216883 .077803 .760599

TYPEH5*| .1851111 .11394 1.62 0.104 -.038201 .408423 .057357

TYPEH6*| -.1702348 .06727 -2.53 0.011 -.302082 -.038388 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after biprobit

y = Pr(IQS=1,IQI=1) (predict)

= .3218205

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0359179 .01329 -2.70 0.007 -.06197 -.009866 .306733

M_EFFORT | .0015913 .00034 4.70 0.000 .000927 .002255 3623.39

NETUDE2 | .0978961 .03399 2.88 0.004 .031271 .164521 .571072

NETUDE3 | .0098829 .00345 2.86 0.004 .003112 .016653 .032419

NETUDE4 | .0644825 .01644 3.92 0.000 .032254 .096711 .246883

LOC3 | -.1434349 .02804 -5.12 0.000 -.198386 -.088483 .684539

MPROM | -3.33e-06 .00000 -1.30 0.192 -8.3e-06 1.7e-06 .000281

STATUT2 | .0319603 .03241 0.99 0.324 -.031562 .095482 .38404

STATUT3 | .0735173 .04502 1.63 0.102 -.014713 .161747 .544888

GENRE2 | .0002575 .00914 0.03 0.978 -.01766 .018175 .093516

GENRE3 | .0400108 .06184 0.65 0.518 -.081194 .161215 .779302

GENRE4 | .0048756 .00732 0.67 0.505 -.009462 .019213 .072319

TYPEH4 | -.052126 .05489 -0.95 0.342 -.159712 .05546 .760599

TYPEH5 | .0099418 .00593 1.68 0.094 -.001687 .02157 .057357

TYPEH6 | -.0181339 .00876 -2.07 0.038 -.035297 -.000971 .094763

------------------------------------------------------------------------------

. probit IQS PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Probit regression Number of obs = 802

LR chi2(15) = 141.39

Prob > chi2 = 0.0000

Log likelihood = -303.76093 Pseudo R2 = 0.1888

------------------------------------------------------------------------------

IQS | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

PAUVRE | -.3361712 .1330708 -2.53 0.012 -.5969852 -.0753572

M_EFFORT | 4.69e-06 8.18e-07 5.74 0.000 3.09e-06 6.29e-06

NETUDE2 | .0968035 .153961 0.63 0.530 -.2049546 .3985615

NETUDE3 | -.045758 .3705613 -0.12 0.902 -.7720448 .6805288

NETUDE4 | .2045312 .2094031 0.98 0.329 -.2058914 .6149538

LOC3 | -.3021582 .1702894 -1.77 0.076 -.6359192 .0316028

MPROM | .0058747 .0276861 0.21 0.832 -.048389 .0601385

STATUT2 | .1089448 .258726 0.42 0.674 -.3981487 .6160384

STATUT3 | .4066412 .2454672 1.66 0.098 -.0744656 .8877481

GENRE2 | .4237278 .315327 1.34 0.179 -.1943017 1.041757

GENRE3 | .1597309 .2332499 0.68 0.493 -.2974305 .6168923

GENRE4 | .083946 .3111837 0.27 0.787 -.5259628 .6938548

TYPEH4 | -.2568133 .312542 -0.82 0.411 -.8693845 .3557578

TYPEH5 | .2565094 .5752346 0.45 0.656 -.8709297 1.383948

TYPEH6 | -.6287403 .3450195 -1.82 0.068 -1.304966 .0474856

_cons | 1.495613 .4376921 3.42 0.001 .6377519 2.353473

------------------------------------------------------------------------------

Note: 0 failures and 20 successes completely determined.

. test NETUDE2 NETUDE3 NETUDE4

( 1) NETUDE2 = 0

( 2) NETUDE3 = 0

( 3) NETUDE4 = 0

chi2( 3) = 1.12

Prob > chi2 = 0.7715

. test STATUT2 STATUT3

( 1) STATUT2 = 0

( 2) STATUT3 = 0

chi2( 2) = 6.25

Prob > chi2 = 0.0440

. test GENRE2 GENRE3 GENRE4

( 1) GENRE2 = 0

( 2) GENRE3 = 0

( 3) GENRE4 = 0

chi2( 3) = 2.05

Prob > chi2 = 0.5624

. test TYPEH4 TYPEH5 TYPEH6

( 1) TYPEH4 = 0

( 2) TYPEH5 = 0

( 3) TYPEH6 = 0

chi2( 3) = 6.54

Prob > chi2 = 0.0880

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 -374.4554 -303.7609 16 639.5219 714.5156

------------------------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after probit

y = Pr(IQS) (predict)

= .93323711

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.0481097 .02299 -2.09 0.036 -.093164 -.003055 .306733

M_EFFORT | 6.07e-07 .00000 9.12 0.000 4.8e-07 7.4e-07 3623.39

NETUDE2*| .0126671 .02045 0.62 0.536 -.027405 .052739 .571072

NETUDE3*| -.0061159 .05111 -0.12 0.905 -.106292 .09406 .032419

NETUDE4*| .0245252 .02345 1.05 0.296 -.021437 .070488 .246883

LOC3*| -.036113 .02014 -1.79 0.073 -.075594 .003368 .684539

MPROM | .0007605 .00359 0.21 0.832 -.006268 .007789 .000281

STATUT2*| .0138459 .03269 0.42 0.672 -.050227 .077919 .38404

STATUT3*| .0545345 .03565 1.53 0.126 -.015329 .124398 .544888

GENRE2*| .0422942 .02425 1.74 0.081 -.005234 .089822 .093516

GENRE3*| .022113 .03468 0.64 0.524 -.045856 .090082 .779302

GENRE4*| .0102945 .03613 0.28 0.776 -.060526 .081115 .072319

TYPEH4*| -.0301212 .03311 -0.91 0.363 -.095013 .03477 .760599

TYPEH5*| .0279465 .05164 0.54 0.588 -.073261 .129154 .057357

TYPEH6*| -.1164904 .08565 -1.36 0.174 -.284361 .05138 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after probit

y = Pr(IQS) (predict)

= .93323711

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0133483 .00593 -2.25 0.024 -.024964 -.001733 .306733

M_EFFORT | .0022008 .00024 9.12 0.000 .001728 .002674 3623.39

NETUDE2 | .0071563 .01142 0.63 0.531 -.015234 .029547 .571072

NETUDE3 | -.000192 .00156 -0.12 0.902 -.00324 .002856 .032419

NETUDE4 | .0065367 .00674 0.97 0.332 -.006676 .019749 .246883

LOC3 | -.0267755 .01597 -1.68 0.094 -.058086 .004534 .684539

MPROM | 2.14e-07 .00000 0.21 0.832 -1.8e-06 2.2e-06 .000281

STATUT2 | .0054161 .01302 0.42 0.677 -.020093 .030925 .38404

STATUT3 | .028683 .01807 1.59 0.112 -.006732 .064098 .544888

GENRE2 | .0051296 .00387 1.33 0.185 -.002452 .012711 .093516

GENRE3 | .0161139 .02371 0.68 0.497 -.030357 .062584 .779302

GENRE4 | .0007859 .00292 0.27 0.788 -.00493 .006502 .072319

TYPEH4 | -.0252859 .03072 -0.82 0.410 -.085486 .034914 .760599

TYPEH5 | .0019046 .00426 0.45 0.655 -.00644 .010249 .057357

TYPEH6 | -.0077129 .00439 -1.76 0.079 -.016326 .000901 .094763

------------------------------------------------------------------------------

. probit IQI PAUVRE M_EFFORT NETUDE2 NETUDE3 NETUDE4 LOC3 MPROM STATUT2 STATUT3 GENRE2 GENRE3 GENRE4 TYPEH4 TYPEH5 TYPEH6

Probit regression Number of obs = 802

LR chi2(15) = 198.28

Prob > chi2 = 0.0000

Log likelihood = -420.29988 Pseudo R2 = 0.1909

------------------------------------------------------------------------------

IQI | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

PAUVRE | -.309579 .1243907 -2.49 0.013 -.5533803 -.0657778

M_EFFORT | 9.40e-07 2.48e-07 3.79 0.000 4.54e-07 1.43e-06

NETUDE2 | .4952073 .1720466 2.88 0.004 .1580022 .8324123

NETUDE3 | .8976417 .3052243 2.94 0.003 .299413 1.49587

NETUDE4 | .7463351 .1919883 3.89 0.000 .3700449 1.122625

LOC3 | -.5817448 .1167157 -4.98 0.000 -.8105033 -.3529863

MPROM | -.0342869 .0260656 -1.32 0.188 -.0853746 .0168008

STATUT2 | .2161808 .2410807 0.90 0.370 -.2563287 .6886902

STATUT3 | .3544155 .2359466 1.50 0.133 -.1080312 .8168623

GENRE2 | .0047049 .2798087 0.02 0.987 -.5437102 .55312

GENRE3 | .1574288 .2287225 0.69 0.491 -.2908591 .6057167

GENRE4 | .2123179 .2914418 0.73 0.466 -.3588976 .7835334

TYPEH4 | -.1852043 .2046241 -0.91 0.365 -.5862601 .2158516

TYPEH5 | .4806323 .2923771 1.64 0.100 -.0924163 1.053681

TYPEH6 | -.4964143 .2625991 -1.89 0.059 -1.011099 .0182706

_cons | -.692406 .3645227 -1.90 0.058 -1.406857 .0220454

------------------------------------------------------------------------------

Note: 0 failures and 1 success completely determined.

. test NETUDE2 NETUDE3 NETUDE4

( 1) NETUDE2 = 0

( 2) NETUDE3 = 0

( 3) NETUDE4 = 0

chi2( 3) = 17.35

Prob > chi2 = 0.0006

. test STATUT2 STATUT3

( 1) STATUT2 = 0

( 2) STATUT3 = 0

chi2( 2) = 3.05

Prob > chi2 = 0.2172

. test GENRE2 GENRE3 GENRE4

( 1) GENRE2 = 0

( 2) GENRE3 = 0

( 3) GENRE4 = 0

chi2( 3) = 1.31

Prob > chi2 = 0.7264

. test TYPEH4 TYPEH5 TYPEH6

( 1) TYPEH4 = 0

( 2) TYPEH5 = 0

( 3) TYPEH6 = 0

chi2( 3) = 12.64

Prob > chi2 = 0.0055

. predict probiqi

(option p assumed; Pr(IQI))

(1279 missing values generated)

. estat ic

------------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

-------------+----------------------------------------------------------------

. | 802 -519.4377 -420.2999 16 872.5998 947.5935

------------------------------------------------------------------------------

. estat summarize

Estimation sample probit Number of obs = 802

-------------------------------------------------------------

Variable | Mean Std. Dev. Min Max

-------------+-----------------------------------------------

IQI | .3503741 .4773848 0 1

PAUVRE | .3067332 .4614254 0 1

M_EFFORT | 3623.385 441724.5 -231860 7.8e+06

NETUDE2 | .5710723 .4952318 0 1

NETUDE3 | .032419 .1772206 0 1

NETUDE4 | .2468828 .431467 0 1

LOC3 | .6845387 .4649893 0 1

MPROM | .0002813 2.258075 -3.63093 11.2024

STATUT2 | .3840399 .4866709 0 1

STATUT3 | .5448878 .4982918 0 1

GENRE2 | .0935162 .2913362 0 1

GENRE3 | .7793017 .4149762 0 1

GENRE4 | .0723192 .2591773 0 1

TYPEH4 | .7605985 .4269845 0 1

TYPEH5 | .0573566 .2326678 0 1

TYPEH6 | .0947631 .2930702 0 1

-------------------------------------------------------------

. mfx compute, dydx at(mean)

Marginal effects after probit

y = Pr(IQI) (predict)

= .33295741

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE*| -.1091167 .04211 -2.59 0.010 -.191652 -.026582 .306733

M_EFFORT | 3.41e-07 .00000 3.73 0.000 1.6e-07 5.2e-07 3623.39

NETUDE2*| .1757471 .05868 2.99 0.003 .060729 .290765 .571072

NETUDE3*| .3464156 .11063 3.13 0.002 .129586 .563245 .032419

NETUDE4*| .2829009 .07244 3.91 0.000 .140931 .424871 .246883

LOC3*| -.217439 .04386 -4.96 0.000 -.303402 -.131476 .684539

MPROM | -.0124612 .00947 -1.32 0.188 -.031023 .006101 .000281

STATUT2*| .0792694 .08892 0.89 0.373 -.095012 .253551 .38404

STATUT3*| .1273767 .08339 1.53 0.127 -.03607 .290824 .544888

GENRE2*| .0017113 .10186 0.02 0.987 -.197931 .201354 .093516

GENRE3*| .0560406 .07957 0.70 0.481 -.099918 .211999 .779302

GENRE4*| .0797871 .11253 0.71 0.478 -.140764 .300338 .072319

TYPEH4*| -.068564 .07696 -0.89 0.373 -.219403 .082275 .760599

TYPEH5*| .1854992 .11602 1.60 0.110 -.041904 .412902 .057357

TYPEH6*| -.1610999 .07343 -2.19 0.028 -.305011 -.017189 .094763

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. mfx compute, dyex at(mean)

Elasticities after probit

y = Pr(IQI) (predict)

= .33295741

------------------------------------------------------------------------------

variable | dy/ex Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

PAUVRE | -.0345114 .01381 -2.50 0.012 -.061579 -.007444 .306733

M_EFFORT | .0012374 .00033 3.73 0.000 .000588 .001887 3623.39

NETUDE2 | .1027799 .03547 2.90 0.004 .033263 .172297 .571072

NETUDE3 | .0105763 .00358 2.95 0.003 .003558 .017595 .032419

NETUDE4 | .066966 .01708 3.92 0.000 .033491 .100441 .246883

LOC3 | -.1447306 .02895 -5.00 0.000 -.201467 -.087994 .684539

MPROM | -3.51e-06 .00000 -1.32 0.188 -8.7e-06 1.7e-06 .000281

STATUT2 | .0301733 .03361 0.90 0.369 -.035707 .096053 .38404

STATUT3 | .0701859 .04667 1.50 0.133 -.021285 .161657 .544888

GENRE2 | .0001599 .00951 0.02 0.987 -.018479 .018799 .093516

GENRE3 | .0445882 .06477 0.69 0.491 -.082353 .171529 .779302

GENRE4 | .0055805 .00766 0.73 0.466 -.009432 .020593 .072319

TYPEH4 | -.051196 .05656 -0.91 0.365 -.162052 .05966 .760599

TYPEH5 | .010019 .00611 1.64 0.101 -.001947 .021985 .057357

TYPEH6 | -.0170967 .00903 -1.89 0.058 -.034795 .000602 .094763

------------------------------------------------------------------------------

1: AFC entre les types de matériau des murs et le type de quartiers

2: AFC entre le type de matériau de la toiture des logements et le type de quartiers

3: AFC entre le type de matériau du pavement des logements et le type de quartiers

4: AFC entre le type de toilettes utilisées et le type de quartiers

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Tu supportes des injustices; Consoles-toi, le vrai malheur est d'en faire"   Démocrite