Evaluation des performances d'un design d'avion de type blended-wing-body de 100 passagerspar Cédric FOFFE NGOUFO Ecole de technologie supérieure - Université du Québec - Maîtrise avec projet en génie aérospatial 2021 |
ANNEXE IIAPPROCHE CLASSIQUE DE DESIGN CONCEPTUELLE D'UN AÉRONEF Figure-A II-Schéma du design conceptuel d'un
aéronef, basé sur les travaux de 120 Figure-A III- Positions tridimensionnelles des profils de design du BWB (Velazquez, 2020) ANNEXE IIIPOSITION DES PROFILS DE DESIGN DU BWB (Velazquez, 2020) 121 ANNEXE IVVISUALISATION DU DESIGN DU BWB AVEC MOTEURS À L'ARRIÈRE DU FUSELAGE Figure-A IV-1 Vues de face, de l'arrière et de la gauche du BWB, configuration « moteurs à l'arrière du fuselage » 122 Figure-A IV-2 Multi-vue du BWB, configuration « moteurs à l'arrière du fuselage » ANNEXE VFigure-A V-1 Vues de face, de dessus et de l'arrière du BWB, configuration « moteurs sous l'aile » VISUALISATION DU DESIGN DU BWB AVEC MOTEURS SOUS L'AILE 124
Figure-A V-2 Multi-vue du BWB, configuration « moteurs sous l'aile » Howe, D. (2000). Aircraft Conceptual Design Synthesis. Professional Engineering Publishing Limited, London and Bury ST Edmunds, UK, 2000. LISTE DE RÉFÉRENCES BIBLIOGRAPHIQUES Creech, Gray, et al. «X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft.» NASA, 7 June 2013, < http://www.nasa.gov/centers/dryden/news/NewsReleases/2013/13-08.html>. Consulté en Juin 2021. Anderson, J. D. (1999). Aircraft performance & design. McGraw-Hill Science Engineering. Bardela, P. A. (2017). Identification et validation du modèle mathématique du moteur de l'avion d'affaire Cessna Citation X par essais en vol (Doctoral dissertation, École de Technologie Supérieure). Bradley, K. R. (2004). A sizing methodology for the conceptual design of blended-wing-body transports. NASA CR, 213016, 2004. Cook, M. V. (2012). Flight dynamics principles: a linear systems approach to aircraft stability and control. Butterworth-Heinemann. Corke, T. C. (2003). Design of aircraft. Englewood Cliffs, NJ: Prentice Hall. Delacroix, T. (2017). Étude de stabilité statique et dynamique d'un avion Blended-Wing-Body de 100 passagers (Maîtrise en Sciences Appliquées, École de Technologie Supérieure). Gibbs, Yvonne. « Corps d'aile hybride / mixte X-48 ». NASA, 6 juillet 2017, < http://www.nasa.gov/centers/armstrong/news/FactSheets/FS-090-DFRC.html>. Consulté en Juin 2021. 126 Howe, D. (2001). Blended wing body airframe mass prediction. Kundu, A. K., Price, M. A., & Riordan, D. (2019). Conceptual Aircraft Design: An Industrial Approach. John Wiley & Sons. Kozek, M., & Schirrer, A. (2015). Modeling and control for a blended wing body aircraft. In Advances in industrial control (pp. 1-308). Springer International Publishing Cham. Larrimer, Bruce I. Au-delà du tube et de l'aile : le corps à voilure mixte X-48 et la quête de la NASA pour remodeler les futurs avions de transport. Nasa, 2020. Larkin, G., & Coates, G. (2017). A design analysis of vertical stabilisers for Blended Wing Body aircraft. Aerospace science and technology, 64, 237-252. Liebeck, R. H. (2004). Design of the blended wing body subsonic transport. Journal of aircraft, 41(1), 10-25. Mattingly, J. D., Heiser, W. H., & Daley, D. H. (1987). Aircraft engine design (No. BOOK). AIAA. MAVERIC Press Release, Airbus (2020a), <file:///C:/Users/CanBec/Downloads/EN-MAVERIC-Airbus-reveals-its-blended-wing-aircraft-demonstrator%20(1).pdf>. Consulté le 8 Juillet 2021. MAVERIC demonstrator, Airbus (2020b), < https://www.airbus.com/newsroom/stories/Imagine-travelling-in-this-blended-wingbody-aircraft.html>. Consulté le 8 Juillet 2021. Megson, T. H. G. (2016). Aircraft structures for engineering students. Butterworth-Heinemann. 127 Obert, E. (2009). Aerodynamic design of transport aircraft. IOS press. Okonkwo, P. P. C. (2016). Conceptual design methodology for blended wing body aircraft (Doctoral dissertation, Cranfield University). Raymer, D. P. (2006). Aircraft Design: A Conceptual Approach and Rds-student, Software for Aircraft Design, Sizing, and Performance Set (AIAA Education): AIAA (American Institute of Aeronautics & Ast). Reist, T. A., & Zingg, D. W. (2013). Aerodynamic Shape Optimization of a Blended-WingBody Regional Transport for a Short Range Mission. Paper presented at the 31st AIAA Applied Aerodynamics Conference, 24 June 2013, Reston, VA, USA. Rose, B. (2010). Flying Wings and Tailless Aircraft. Midland. Sadraey, M. H. (2012). Aircraft design: A systems engineering approach. John Wiley & Sons. Schmidt, A., & Brunswig, H. (2006, September). The A0. 30 blended wing body configuration: development and current status 2006. In Proc. 25th International Congress of the Aeronautical Sciences, Hambourg, Germany. Scholz, D. (2007). A Student Project of a Blended Wing Body Aircraft-From Conceptual Design to Flight Testing. In EWADE 2007-8th European Workshop on Aircraft Design Education. Thomas Netzel et al (2013) The project A0.30, Manchester Metropolitan University. < https://www.mmu.ac.uk/media/mmuacuk/content/documents/carpe/2013-conference/papers/creative-engineering/Thomas-Netzel-et-al.pdf>. Consulté en Juin 2021. 128 Torenbeek, E. (2013). Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. Chichester, West Sussex, United Kingdom: John Wiley & Sons. van Dommelen, J., & Vos, R. (2014). Conceptual design and analysis of blended-wing-body aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(13), 2452-2474. doi:10.1177/0954410013518696 Velazquez, O. (2020). Numerical Analysis of the Multi-Section Nature of the Regional Blended Wing Body Aircraft at Low Speed (Doctoral dissertation, École de Technologie Supérieure). Wan, T., & Yang, H. (2010, January). Aerodynamic performance investigation of a modern blended-wing-body aircraft under the influence of heavy rain condition. In Proceedings of the 27th International Congress of Aeronautical Sciences (ICAS), Nice, France. |
|