évaluation de l'effet d'une étude posturale dynamique cycliste sur le rendement énergétique, à court terme, chez le cycliste entraàŽnépar Léo Gagnepain Université d'Aix-Marseille - Master 1 Entraînement et Optimisation de la Performance Sportive 2022 |
VI. ConclusionCette étude a mis en exergue une tendance selon laquelle les études posturales cyclistes dynamiques réalisées par Velofitting amèneraient à des diminutions de consommation d'oxygène (- 10,2 %) et de fréquence cardiaque (- 4,5 %) pour un effort d'endurance de 30 min à 90 % FTP. Ces améliorations se traduiraient alors par un meilleur rendement énergétique (+ 13,7 %) équivalent à un gain médian de puissance de 13,6 % soit 36 W. 24 Compte tenu des résultats obtenus, des travaux de recherches complémentaires sont envisageables en suivant les perspectives d'améliorations énoncées précédemment et, notamment, en validant la tendance mesurée sur un groupe de participants plus conséquent ou encore sur une durée de plusieurs mois, impliquant plusieurs tests d'effort pour mesurer les effets de l'étude posturale dynamique de Velofitting sur le long terme. VII. BibliographieAsplund, C., & St Pierre, P. (2004). Knee Pain and Bicycling: Fitting Concepts for Clinicians. The Physician and Sportsmedicine, 32(4), 23-30. https://doi.org/10.3810/psm.2004.04.201 Bini, R., Hume, P., Croft, J., & Kilding, A. (2013). Pedal force effectiveness in cycling: A review of constraints and training effects. Research outputs 2013. Bini, R. R. (2016). The need for a link between bike fitting and injury risk. Journal of Science and Cycling, 5(1), 1-2. Bini, R. R., & Bini, A. F. (2018). Potential factors associated with knee pain in cyclists: A systematic review. Open Access Journal of Sports Medicine, 9, 99-106. https://doi.org/10.2147/OAJSM.S136653 Bini, R. R., & Hume, P. (2018). A comparison of static and dynamic measures of lower limb joint angles in cycling: Application to bicycle fitting. Human Movement, 17(1), 36-42. https://doi.org/10.1515/humo-2016-0005 Braeckevelt, J., De Bock, J., Schuermans, J., Verstockt, S., Witvrouw, E., & Dierckx, J. (2019). The Need for Data-driven Bike Fitting: Data Study of Subjective Expert Fitting: Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support, 181-189. https://doi.org/10.5220/0008344701810189 25 Brouwer, E. (1957). On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (Oxygen intake and carbonic acid output) and urine-N. Acta Physiologica Et Pharmacologica Neerlandica, 6, 795-802. Debraux, P., Grappe, F., Manolova, A. V., & Bertucci, W. (2011). Aerodynamic drag in cycling: Methods of assessment. Sports Biomechanics, 10(3), 197-218. https://doi.org/10.1080/14763141.2011.592209 De Vey Mestdagh, K. (1998). Personal perspective: In search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334. https://doi.org/10.1016/S0003-6870(97)00080-X Dinsdale, N. J., & Dinsdale, N. (2011). The benefits of anatomical and biomechanical screening of competitive cyclists. SportEX Dyn, 28, 17-20. Ferrer-Roca, V., Bescós, R., Roig, A., Galilea, P., Valero, O., & García-López, J. (2014). Acute Effects of Small Changes in Bicycle Saddle Height on Gross Efficiency and Lower Limb Kinematics. The Journal of Strength & Conditioning Research, 28(3), 784-791. https://doi.org/10.1519/JSC.0b013e3182a1f1a9 Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2011). Static versus dynamic evaluation in bike fitting: influence of saddle height on lower limb kinematics. ISBS-Conference Proceedings Archive. García-López, J., Rodríguez-Marroyo, J. A., Juneau, C.-E., Peleteiro, J., Martínez, A. C., & Villa, J. G. (2008). Reference values and improvement of aerodynamic drag in professional cyclists. Journal of Sports Sciences, 26(3), 277-286. https://doi.org/10.1080/02640410701501697 Grappe, F. (2009). Cyclisme et optimisation de la performance: Science et méthodologie de l'entraînement. De Boeck Supérieur. Hintzy, F., Belli, A., Grappe, F., & Rouillon, J. D. (1999). Effet de l'utilisation de pédales automatiques sur les caractéristiques mécaniques mesurées lors de sprints sur cycloergomètre non isocinétique. Science & Sports, 14(3), 137-144. https://doi.org/10.1016/S0765-1597(99)80055-0 26 Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. Sports Biomechanics, 0(0), 1-15. https://doi.org/10.1080/14763141.2019.1640279 Holmes, J. C., Pruitt, A. L., & Whalen, N. J. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205. Hooreman, H. (2006). Petit lexique de VO2 à l'usage des non pratiquants. Réalités Cardiologiques, 1(218), 5. Jobson, S. A., Hopker, J. G., Korff, T., & Passfield, L. (2012). Gross efficiency and cycling performance: A brief review. Journal of Science and Cycling, 1(1), 3-8. Johnston, T. E. (2007). Biomechanical Considerations for Cycling Interventions in Rehabilitation. Physical Therapy, 87(9), 1243-1252. https://doi.org/10.2522/ptj.20060210 Mellion, M. B. (1991). Common Cycling Injuries. Sports Medicine, 11(1), 52-70. https://doi.org/10.2165/00007256-199111010-00004 Menard, M., Domalain, M., Decatoire, A., & Lacouture, P. (2016). Influence of saddle setback on pedalling technique effectiveness in cycling. Sports Biomechanics, 15(4), 462-472. https://doi.org/10.1080/14763141.2016.1176244 Menard, M., Domalain, M., Decatoire, A., & Lacouture, P. (2020). Influence of saddle setback on knee joint forces in cycling. Sports Biomechanics, 19(2), 245-257. Moseley, L., & Jeukendrup, A. E. (2001). The reliability of cycling efficiency: Medicine and Science in Sports and Exercise, 621-627. https://doi.org/10.1097/00005768-200104000-00017 Priego Quesada, J. I., Kerr, Z. Y., Bertucci, W. M., & Carpes, F. P. (2019). The association of bike fitting with injury, comfort, and pain during cycling: An international retrospective survey. European Journal of Sport Science, 19(6), 842-849. https://doi.org/10.1080/17461391.2018.1556738 27 Ruby, P., Hull, M. L., Kirby, K. A., & Jenkins, D. W. (1992). The effect of lower-limb anatomy on knee loads during seated cycling. Journal of Biomechanics, 25(10), 1195?1207. https://doi.org/10.1016/0021-9290(92)90075-C Sauer, J. L., Potter, J. J., Weisshaar, C. L., Ploeg, H.-L., & Thelen, D. G. (2007). Influence of Gender, Power, and Hand Position on Pelvic Motion during Seated Cycling. Medicine & Science in Sports & Exercise, 39(12), 2204?2211. https://doi.org/10.1249/mss.0b013e3181568b66 Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road Bicycle Fit. Clinical Journal of Sport Medicine, 15(4), 271?276. https://doi.org/10.1097/01.jsm.0000171255.70156.da Toth, C., McNeil, S., & Feasby, T. (2005). Central Nervous System Injuries in Sport and Recreation. Sports Medicine, 35(8), 685?715. https://doi.org/10.2165/00007256-200535080-00003 |
|