WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Etude de l'effet immunomodulateur de la membrane lamellaire d'echinoccocus granulosus sur la production du NO au cours des MICI


par Sara Benazzouz
Universite des sciences et de la technologie Houari Boumediane - Master en science de la nature et de la vie, speciality: Biotechnologie et pathologie moleculaire 2015
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion

Conclusion

Au regard global de notre étude, nous suggérons l'instauration d'un effet curatif exercé par l'extrait soluble de la membrane lamellaire hydatique dans le modèle de colite expérimentale induite par le DSS. En effet, il apparait que la ML exerce un effet immunomodulateur sur l'expression de la NOS2 qui se traduit par la diminution de la production du NO in vivo et in vitro au niveau des surnageants de culture des macrophages péritonéaux. D'autre part nous avons noté un effet bénéfique probable sur la protection de l'intégrité de la muqueuse colique. Nous avons dans cette optique, mis en évidence, le rôle immunomodulateur de cet extrait sur la production du NO ex vivo chez des patients atteints de MICI. En effet, les résultats obtenus à travers notre étude, sont en faveur de l'hypothèse hygiéniste et suggèrent un effet thérapeutique potentiel de la ML dans les MICI.

IL-10

1 Arginase

i

1-1-1-1-1-1 1-1

N O52-444

t

O5

Barrière épithéliale

Lamina propria

IL-4

Treg I TGF-j3 44

IL-10

Induction de la tolérance immunitaire aux bactéries commensales

IL-4

IL-5 IL-13

el le

li 'forrre

0

pn

i

Barrière épithéliale

ONOO-

Lamina propria

IL-13

TNFa

TGF-R1IL-1G

IL-4

IL-5 L-13

IFN-y

`IL-17e 1L-23

O2-

Rupture de l'homéostasie intestinale

TN Fat

Lamina propria

NOSJI

ONOO-

(y,

Injection IP de la ML

i

-- 00

- 1-

lme

Barrière épithéliale

tIArginase

1 NOS2 M211,

114

L IL-4 L-6 1

· TGF-lit IL-4

G F-13 1 IL-5 IL-101 IL-13

IL-4 "1.4IFN-y

IL-131

1

Argi na se 11t

TGF-131 I L-10

IL-23

X

MI.

TNFaI

Treg

NOS2

NOS2

TNFa

IL-17a

Figure 17 : Schéma proposé pour illustrer les altérations induites par le DSS et l'effet
protecteur probable de la membrane lamellaire.

Références bibliographiques

Références bibliographiques :

Abdelouhab, K., Rafa, H., Toumi, R., Bouaziz, S., Medjeber, O., & Touil-Boukoffa, C. (2012). Mucosal intestinal alteration in experimental colitis correlates with nitric oxide production by peritoneal macrophages: effect of probiotics and prebiotics. Immunopharmacol Immunotoxicol, 34(4), 590-597. doi: 10.3109/08923973.2011.641971

Abreu, M. T. (2010). Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol, 10(2), 131-144. doi: 10.1038/nri2707

Amri, M., Mezioug, D., & Touil-Boukoffa, C. (2009). Involvement of IL-10 and IL-4 in evasion strategies of Echinococcus granulosus to host immune response. Eur Cytokine Netw, 20(2), 6368. doi: 10.1684/ecn.2009.0154

Amri, M. & Touil-Boukoffa, C., 2011. PS2-092. Down-regulation of Th1/Th17 protective immune responses during human echinococcosis. Cytokine, 56(1), 88-89. Available at: http://dx.doi.org/10.1016/j.cyto.2011.07.256.

Amri, M. (2012). Etude du rôle des effecteurs cytokiniques, antigéniques et du monoxyde d'azote dans le rapport immunité/échappement parasitaire au cours de l'échinococcose (Doctoral dissertation)

Amri, M., & Touil-Boukoffa, C. (2014). Induction of Treg and alternatively activated macrophages by the helminth Echinococcus granulosus: implication in the promotion or control of allergic disease Clinical and Translational Allergy, 4(Suppl 2), P61. doi: 10.1186/2045-70224-s2-p61

Ananthakrishnan, A. N. (2013). Environmental Risk Factors for Inflammatory Bowel Disease Gastroenterology & Hepatology 9(6).

Ananthakrishnan, A. N. (2015). Environmental risk factors for inflammatory bowel diseases: a review. Dig Dis Sci, 60(2), 290-298. doi: 10.1007/s10620-014-3350-9

Anderson, C. A., Boucher, G., Lees, C. W., Franke, A., D'Amato, M., Taylor, K. D., . . . Rioux, J. D. (2011). Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet, 43(3), 246-252. doi: 10.1038/ng.764

Bar-On, L., Zigmond, E. & Jung, S., 2011. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages Seminars in Immunology, 23(1), 58-64. Available at : http://dx.doi.org/10.1016/j.smim.2011.01.002.

Références bibliographiques

Baron, S., Turck, D., Leplat, C., Merle, V., Gower-Rousseau, C., Marti, R., Colombel, J. F. (2005). Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut, 54(3), 357-363. doi: 10.1136/gut.2004.054353

Bashi, T., Bizzaro, G., Ben-Ami Shor, D., Blank, M., & Shoenfeld, Y. (2015). The mechanisms behind helminth's immunomodulation in autoimmunity. Autoimmun Rev, 14(2), 98-104. doi: 10.1016/j.autrev.2014.10.004

Baumgart, D. C., Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet ; 369: 1627-1640. doi:10.1016/S0140-6736(07)60750-8.

Ben-Ami Shor, D., Harel, M., Eliakim, R., & Shoenfeld, Y. (2013). The hygiene theory harnessing helminths and their ova to treat autoimmunity. [Review]. Clin Rev Allergy Immunol, 45(2), 211-216. doi: 10.1007/s12016-012-8352-9

Bernstein, C. N. (2015). Treatment of IBD: Where We Are and Where We Are Going. [Review]. Am J Gastroenterol, 110(1), 114-126. doi: 10.1038/ajg.2014.357

Bogdan, C. & Nathan, C., 1993. Modulation of Macrophage Function by Transforming Growth Factor p, Interleukin-4, and Interleukin-lo». Annals New York Academy of Sciences, 685, 713- 739.

Brandtzaeg, P. (2009). Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol, 70(6), 505-515. doi: 10.1111/j.1365-3083.2009.02319.x

D

Diaz, A., Casaravilla, C., Allen, J. E., Sim, R. B., & Ferreira, A. M. (2011). Understanding the laminated layer of larval Echinococcus II : immunology. Trends Parasitol, 27(6), 264-273. doi: 10.1016/j.pt.2011.01.008

Diaz, A., Casaravilla, C., Irigoin, F., Lin, G., Previato, J. O., & Ferreira, F. (2011). Understanding the laminated layer of larval Echinococcus I : structure. [Review]. Trends Parasitol, 27(5), 204-213. doi: 10.1016/j.pt.2010.12.012

Dieleman, LA., Ridwan, BU., Tennyson, GS., Beagley, KW., Bucy, RP., Elson, CO. (1994) Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterol; 107:1643-1652.

w

Economou, M., & Pappas, G. (2008). New global map of Crohn's disease: Genetic, environmental, and socioeconomic correlations. [Review]. Inflamm Bowel Dis, 14(5), 709-720. doi: 10.1002/ibd.20352

Références bibliographiques

Elliott, D. E., & Weinstock, J. V. (2012). Helminth-host immunological interactions : prevention and control of immune-mediated diseases. Ann N Y Acad Sci, 1247, 83-96. doi: 10.1111/j.1749-6632.2011.06292.

F

Fiasse, R., Dewit, O. & Latinne, D., 2009. Is endemic helminthiasis in sub-Saharan Africa the sole reason for the low prevalence of inflammatory bowel disease Impacts on public health. Journal Africain d'Hépato-Gastroentérologie, 3(2), 58-66.

Frolkis, A., Dieleman, L. A., Barkema, H. W., Panaccione, R., Ghosh, S., Fedorak, R. N., Kaplan, G. G. (2013). Environment and the inflammatory bowel diseases Can J gastroenterol 27(3), 18-24.

G

Gianchecchi, E., Delfino, D. V., & Fierabracci, A. (2014). Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmun Rev, 13(3), 231-241. doi: 10.1016/j.autrev.2013.10.007

Gordon, S., 2003. Alternative activation of macrophages. Nature reviews. Immunology, 3(1), 23-35.

Guo, A. Y., Stevens, B. W., Wilson, R. G., Russell, C. N., Cohen, M. A., Sturgeon, H. C., Ananthakrishnan, A. N. (2014). Early life environment and natural history of inflammatory bowel diseases. BMC Gastroenterol, 14(1), 216. doi: 10.1186/s12876-014-0216-8

H

Hammada, T., Lemdaoui, M. C., Boutra, F., Zoughailech, D., & Asselah, H. (2011). Aspects épidémiologiques des maladies inflammatoires chroniques de l'intestin dans une population algérienne. Journal Africain d'Hépato-Gastroentérologie, 5(4), 293-302. doi: 10.1007/s12157011-0327-6

Halfvarson, J. et al., 2007. Longitudinal concordance for clinical characteristics in a Swedish-Danish twin population with inflammatory bowel disease. Inflammatory Bowel Diseases, 13(12), 1536-1544.

Hendrickson, B. A., Gokhale, R., & Cho, J. H. (2002). Clinical Aspects and Pathophysiology of Inflammatory Bowel Disease. Clinical Microbiology Reviews, 15(1), 79-94. doi: 10.1128/cmr.15.1.79-94.2002

Références bibliographiques

Heylen, M. et al., 2014. Of worms, mice and man: An overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacology and Therapeutics, 143(2), 153-167. Available at: http://dx.doi.org/10.1016/j.pharmthera.2014.02.011.

Hunter, M. M., & McKay, D. M. (2004). Helminths as therapeutic agents for inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 19(2), 167-177. doi: 10.1111/j.0269-2813.2004.01803.

J

Jung, C., Hugot, JP., Barreau, F. (2010) Peyer's Patches: The Immune Sensors of the Intestine. International Journal of Inflammation; 12

K

Khan, W.I. et al., 2002. Intestinal nematode infection ameliorates experimental colitis in mice. Infection and Immunity, 70(11), 5931 -5937.

Kimura, H. et al., 1997. Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn's disease. Digestive diseases and sciences, 42(5), 1047-1054.

Kolios, G., Valatas, V., & Ward, S. G. (2004). Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. [Review]. Immunology, 113(4), 427-437. doi: 10.1111/j.1365-2567.2004.01984.

Korzenik, J. R., & Podolsky, D. K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. [Review]. Nat Rev Drug Discov, 5(3), 197-209. doi: 10.1038/nrd1986

L

Laclotte, C., Oussalah, A., Rey, P., Bensenane, M., Pluvinage, N., Chevaux, J. B., Peyrin-Biroulet, L. (2008). [Helminths and inflammatory bowel diseases]. Gastroenterol Clin Biol, 32(12), 1064-1074. doi: 10.1016/j.gcb.2008.04.030

Lesage, S. et al., 2002. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. American journal of human genetics, 70(4), 845-857.

Loftus., & Edward. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 126(6), 1504-1517. doi: 10.1053/j.gastro.2004.01.063

Références bibliographiques

M

McCole, D. F. (2014). IBD candidate genes and intestinal barrier regulation. [Research Support, N.I.H., Extramural]. Inflamm Bowel Dis, 20(10), 1829-1849. doi: 10.1097/MIB.0000000000000090

MacDonald, T.T. et al., 2011. Regulation of homeostasis and inflammation in the intestine.

Gastroenterology, 140(6), 1768-1775. Available at:
http://dx.doi.org/10.1053/j.gastro.2011.02.047.

Molodecky., N. A., & Kaplan., G. G. ( 2010). Environmental Risk Factors for Inflammatory Bowel Disease. Gastroenterology & Hepatology 6(5).

N

Nancey, S. et al., 2008. Apport des modèles animaux dans les maladies inflammatoires chroniques de l'intestin. , 15, .33-41.

Neuman, M.G., 2007. Immune dysfunction in inflammatory bowel disease. Translational Research, 149(4), 173-186.

Neurath, M. F. (2014) Cytokines in inflammatory bowel disease. Nature Reviews Immunology 14, 329-342. doi:10.1038/nri3661

Neutra, M. R., Mantis, N., & Kraehenbuhl, J. (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues Nature Immunology 2, 1004 - 1009. doi:10.1038/ni1101-1004

O

Ouellette, A. J. (2010). Paneth cells and innate mucosal immunity. [Research Support, N.I.H., Extramural Review]. Curr Opin Gastroenterol, 26(6), 547-553. doi: 10.1097/MOG.0b013e32833dccde

P

Pacher, P. et al., 2007. Nitric Oxide and Peroxynitrite in Health and Disease. Physiological reviews, 75(1), pp.315-424.

Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol, 14(3), 141-153. doi: 10.1038/nri3608

Références bibliographiques

Ponder, A., 2013. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. , pp.237-247.

Powrie, F., 2012. Gut reactions: Immune pathways in the intestine in health and disease. EMBO Molecular Medicine, 4(2), 71-74.

Rachmilewitz D, Stamler JS, Bachwich D, Karmeli F, Ackerman Z, Podolsky DK. (1995) Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut ;36 : 718-23

Rafa, H., Amri, M., Saoula, H., Belkhelfa, M., Medjeber, O., Boutaleb, A., Touil-Boukoffa, C. (2010). Involvement of interferon-gamma in bowel disease pathogenesis by nitric oxide pathway: a study in Algerian patients. J Interferon Cytokine Res, 30(9), 691-697. doi: 10.1089/jir.2010.0012

Rafa, H., Saoula, H., Belkhelfa, M., Medjeber, O., Soufli, I., Toumi, R.,Touil-Boukoffa, C. (2013). IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid. J Interferon Cytokine Res, 33(7), 355-368. doi: 10.1089/jir.2012.0063

Roediger, W. E. W., Babidge, W., Millard, S. (1996) Methionine derivatives diminish sulphide damage to colonocytes - implications for ulcerative colitis Gut ; 39: 77-81.

Sarra, M. et al., 2010. IL-23/IL-17 axis in IBD. Inflammatory Bowel Diseases, 16(10), 1808- 1813.

Sartor, R. B. (2006). Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. [Research Support, N.I.H., Extramural Review]. Nat Clin Pract Gastroenterol Hepatol, 3(7), 390-407. doi: 10.1038/ncpgasthep0528

Schaffler, A., Menche, N. (2004). Anatomie-Physiologie-Biologie. 2e éd. Paris : Maloine, 454 p. (Collection Diplômes Et Études Infirmiers).

Shambesh, M. K., Craig, P. S., Wen, H., Rogan, M. T., Paolillo, E. (1997) «IgG1 and IgG4 serum antibody responses in asymptomatic and clinically expressed cystic echinococcosis patients,» Acta Tropica, vol. 64, no. 1-2, 53-63.

Siracusano, A., Delunardo, F., Teggi, A., & Ortona, E. (2012). Host-parasite relationship in cystic echinococcosis: an evolving story. [Review]. Clin Dev Immunol, 2012, 639362. doi: 10.1155/2012/639362

Références bibliographiques

Solomon, L., Mansor, S., Mallon, P., Donnelly, E., Hoper, M., Loughrey, M., Gardiner, K. (2010). The dextran sulphate sodium (DSS) model of colitis: an overview. Comparative Clinical Pathology, 19(3), 235-239. doi: 10.1007/s00580-010-0979-4

Soufli, I., Toumi, R., Rafa, H., Amri, M., Labsi, M., Khelifi, L., Nicoletti, F & Touil-Boukoffa, C. (2015). Crude extract of hydatid laminated layer from Echinococcus granulosus cyst attenuates mucosal intestinal damage and inflammatory responses in Dextran Sulfate Sodium induced colitis in mice. J Inflamm (Lond), 12, 19. doi: 10.1186/s12950-015-0063-6

Steers, N.J.R., Rogan, M.T. & Heath, S., 2001. In-vitro susceptibility of hydatid cysts of Echinococcus granulosus to nitric oxide and the effect of the laminated layer on nitric oxide production. Parasite Immunology, 23(8), 411 -417.

Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn's disease. Gut 54:87-90 11.

Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis : a randomized controlled trial. Gastroenterology 128: 825- 832 12.

Thomas, G. A. O., Rhodes, J., Green, J. T., & Richardson, C. (2000). Role of smoking in inflammator y bowel disease: implications for therapy. Postg rad Med 76:273-279.

Touil-Boukoffa, C., Bauvois, B., Sancéau, J., Hamrioui, B., & Wietzerbin, J. (1998). Production of nitric oxide (NO) in human hydatidosis: Relationship between nitrite production and interferon-y levels. Biochimie, 80, 739-744.

Toumi, R., et al., 2013. Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis. Immunopharmacology and Immunotoxicology, 35, 403-409.

Toumi, R., Soufli, I., Rafa, H., Belkhelfa, M., Biad, A., & Touil-Boukoffa, C. (2014). Probiotic bacteria Lactobacillus and bifidobacterium attenuate inflammation in dextran sulfate sodium-induced experimental colitis in mice. Int. J. Immunopathol. Pharmacol. 27, no. 4, 0-0.

Versini, M. et al., 2015. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Medicine, 13(1), 1 -16.

Références bibliographiques

W

Weinstock KG, Mastrangelo MF, Burkett TJ, Garfinkel DJ, Strathern JN. (1990) Multimeric arrays of the yeast retrotransposon Ty. Mol Cell Biol 10(6):2882-92

Wells, JM., Rossia, O., Meijerinka, M.,b, van Baarlena, P. (2011) Epithelial crosstalk at the microbiota-mucosal interface. PNAS ; 108 : 4607-4614.

Wirtz, S. & Neurath, M.F., 2007. Mouse models of inflammatory bowel disease. Advanced Drug Delivery Reviews, 59(11), 1073-1083.

X

Xavier, R. J., & Podolsky, D. K. (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature, 448(7152), 427-434. doi: 10.1038/nature06005

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle