The use of short-term solutions against grape sunburn within a context of climate change in the Médoc vineyardpar Célia MILCAN Ecole d'Ingénieurs de Purpan - Toulouse School of Management - Ingénieur Agronome - Master 2 Management International 2022 |
ConclusionThe study was conducted on two parcels of Cabernet Sauvignon grapevine and highlighted the reduction of sunburn symptoms on both the kaolin-sprayed modality, as well as on the early defoliation modality, while being exposed to high temperatures and solar radiation. This study meets the need of Château Margaux to find short-term solutions against grape sunburn, waiting to be able to reorient their parcels. The 2022 vintage has been hot and dry, favorable to grape sunburn. There has been less rainfall in 2022 than in 2021, resulting in a higher canopy porosity, and exposing more bunches to solar radiation. On average, the kaolin-spraying solution helped to decrease by 90% the symptoms on the bunches of grapes, meanwhile the early defoliation solution decreased sunburn by 86% by the end of the growing season. The sunburn observation as well as the bunch temperatures model brought to light that the kaolin particle film is efficient on the canopy whenever the temperatures exceed 30°C. In this condition, sunburn symptoms start to appear, and bunch temperature rises above 40°C. It also brought to light that early defoliation can increase bunch temperature by diminishing the bunch coverage, without significantly increasing its sunburn symptoms. Thanks to the calibration model and the manually taken infrared temperatures, we have observed a significantly cooling effect of kaolin on both bunches and leaves. We can therefore establish a link between the sunburn protection and the bunch/leaves temperatures reduction. Globally, grapevine physiology doesn't seem to have been negatively impacted by kaolin and early defoliation during the 2022 vintage, even under the constraining weather conditions. Indeed, we can even highlight that the kaolin particle film has had a positive effect on the thermo-radiative stresses of the plant, as well as on its water efficiency. On the contrary, the early defoliation modality increased the plant's stresses by increasing its porosity, but still managed to reduce the symptoms of sunburn on bunches, by increasing its synthesis of metabolites. Regarding the berries, it doesn't seem that kaolin and early defoliation affected their quality negatively, as the results weren't significant. Both alternatives could be a potential short-term solution to tackle the issue of grape sunburn, as they do not seem to affect the organoleptic quality of the harvest. However, Château Margaux should continue this study by implementing berry and wine tasting between modalities to make sure both modalities do not affect the wine organoleptic profile. This study emphasizes promising results for both kaolin and early defoliation against sunburn, after three years of test on the vineyard. Nevertheless, the use of both methods needs to be evaluated in the long run to make sure that it won't affect the physiology of the vineyard, in the context of the Château Margaux's terroir. In a context of climate change, where drought events and heat waves are becoming more recurrent, the 2022 vintage happened to be a good example of how global warming can affect grape production and helped us justify the relevance of using alternative methods to reduce its effects. Therefore, to continue this study, we would advise choosing parcels with other grape varieties and/or orientations, to verify that both methods will work in any situation within the vineyard. Additionally, it could be interesting to modulate the kaolin sprayings, by reducing the dose but increasing the number of applications for the vintages with higher rainfall. 71 References ADÉLAÏDE, Lucie and CHANEL, Olivier, 2021. Evaluation monétaire des effets sanitaires des canicules en France entre 2015 et 2020. Bulletin Epidémiologique Hebdomadaire. 2021. No. 12, p. 215-223. AGRESTE NOUVELLE-AQUITAINE, 2020. La filière viti-vinicole girondine au premier rang national de la viticulture d'appellation. Online. 2020. [Accessed 4 May 2022]. Available from: https://draaf.nouvelle-aquitaine.agriculture.gouv.fr/IMG/pdf/AgresteNAEtudes_7juin2020_FFvitiGironde_RECTIFICATIF_cle0edc51 .pdf AGRISYNERGIE, 2022. Sokalciarbo WP Coeur de Kaolin - Barrière minérale naturelle insectifuge homologuée. Online. 2022. [Accessed 9 August 2022]. Available from: https://www.agrisynergie.com/protection/ AMERINE, M. and WINKLER, A., 1944. Composition and Quality of Musts and Wines of California Grapes. Hilgardia : A Journal of Agricultural Science Published by the California Agricultural Experiment Station. 1944. Vol. 15, no. 6, p. 493-675. ARAÚJO, Márcia, SANTOS, Conceição and DIAS, Maria Celeste, 2018. Can Young Olive Plants Overcome Heat Shock? In: ALVES, Fátima, LEAL FILHO, Walter and AZEITEIRO, Ulisses (eds.), Theory and Practice of Climate Adaptation. Online. Cham: Springer International Publishing. p. 193-203. Climate Change Management. [Accessed 23 May 2022]. ISBN 978-3-319-72874-2. ARTELIA, 2015. Panorama des effets du changement climatique et de leurs conséquences en Gironde. Online. 2015. Conseil Départemental de Gironde. [Accessed 16
April 2022]. Available from: 03/Panorama%20des%20effets%20du%20changement%20climatique_0.pdf BAYR, Hülya, 2005. Reactive oxygen species. Critical Care Medicine. 2005. Vol. 33, no. 12, p. 498. DOI 10.1097/01.CCM.0000186787.64500.12. BÉLANGER, Nicolas, 2017. La porosité et les coefficients de résistance des barrières artificielles et des haies brise-vent - ENV 3114 Agroforesterie et développement durable. Université TELUQ. Online. 2017. [Accessed 28 July 2022]. Available from: https://env3114.teluq.ca/module-5/textes/5-3-la-porosite-et-les-coefficients-de-resistance-des-barrieres-artificielles-et-des-haies-brise-vent/ BERTON, Jérémie, 2022. Histoire de la vigne en France. Oenologie.fr. Online. 2022. [Accessed 2 May 2022]. Available from: https://www.oenologie.fr/histoire-vigne-france/ BONADA, M., SADRAS, V.o. and FUENTES, S., 2013. Effect of elevated temperature on the onset and rate of mesocarp cell death in berries of Shiraz and Chardonnay and its relationship with berry shrivel. Australian Journal of Grape and Wine Research. 2013. Vol. 19, no. 1, p. 87-94. DOI 10.1111/ajgw.12010. BONDADA, Bhaskar Rao and KELLER, Markus, 2012. Not All Shrivels Are Created Equal--Morpho-Anatomical and Compositional Characteristics Differ among Different Shrivel Types That Develop during Ripening of Grape (Vitis vinifera L.) Berries. American Journal of Plant Sciences. Online. 6 July 2012. Vol. 2012. [Accessed 10 May 2022]. DOI 10.4236/ajps.2012.37105. BOQUET, Yves, 2006. Vigne et changement climatique. Territoire en mouvement Revue de géographie et aménagement. Territory in movement Journal of geography and planning. Online. 2006. No. 3. [Accessed 28 June 2022]. DOI https://doi.org/10.4000/tem.360. BRILLANTE, Luca, BELFIORE, Nicola, GAIOTTI, Federica, LOVAT, Lorenzo, SANSONE, Luigi, PONI, Stefano and TOMASI, Diego, 2016. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLOS ONE. 2016. Vol. 11, no. 6, p. 19. DOI 10.1371/journal.pone.0156631. 72 BRISSON, Nadine and LEVRAULT, Frédéric, 2010. Changement climatique, agriculture et forêt en France: simulations d'impacts sur les principales espèces. Le Livre Vert du projet CLIMATOR. . ADEME Editions. Angers: ADEME. ISBN 978-2-35838-128-4. BRODRIBB, Tim J. and HOLBROOK, N. Michele, 2003. Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant
Physiology. 2003. Vol. 132, no. 4, p. 2166-2173. CHAABANI, Emna, 2019. Eco-extraction et valorisation des métabolites primaires et secondaires des différentes parties de Pistacia lentiscus. Online. Thèse de doctorat. Université d'Avignon; Université de Carthage. [Accessed 30 July 2022]. Available from: https://tel.archives-ouvertes.fr/tel-02519270 Château Margaux, 2022. Online. [Accessed 10 May 2022]. Available from: https://www.chateau-margaux.com/en CHAVES, M. Manuela, HARLEY, Peter C., TENHUNEN, John D. and LANGE, Otto L., 1987. Gas exchange studies in two Portuguese grapevine cultivars. Physiologia Plantarum. 1987. Vol. 70, no. 4, p. 639-647. DOI 10.1111/j.1399-3054.1987.tb04318.x. CHONE, X., LEEUWEN, C. Van, CHERY, P. and RIBEREAU-GAYON, P., 2001. Terroir Influence on Water Status and Nitrogen Status of non-Irrigated Cabernet Sauvignon (Vitis vinifera). Vegetative Development, Must and Wine Composition (Example of a Medoc Top Estate Vineyard, Saint Julien Area, Bordeaux, 1997). South African Journal of Enology and Viticulture. 2001. Vol. 22, no. 1, p. 8-15. DOI 10.21548/22-1-2159. CIVB, 2020. Bilan 2019 et stratégie 2020. Dossier de presse vins de Bordeaux. Bordeaux, 2020. p. 86. CNIV, 2019. Chiffres clés. Comité National des Interprofessions des Vins à appellation d'origine et à indication géographique. Online. 2019. [Accessed 2 May 2022]. Available from: https://www.intervin.fr/etudes-et-economie-de-la-filiere/chiffres-cles CNRS, 2020. Le changement climatique à l'échelle des vignobles. Online. 2020. [Accessed 21 May 2022]. Available from: https://www.adviclim.eu/wp-content/uploads/2020/03/CNRS-Projet-LIFE-ADVICLIM-09-03-2020.pdf CONIBERTI, Andrés, FERRARI, Virginia, DELLACASSA, Eduardo, BOIDO, Eduardo, CARRAU, Francisco, GEPP, Vivienne and DISEGNA, Edgardo, 2013. Kaolin over sun-exposed fruit affects berry temperature, must composition and wine sensory attributes of Sauvignon blanc. European Journal of Agronomy. 2013. Vol. 50, p. 75-81. DOI 10.1016/j.eja.2013.06.001. COOK, Benjamin I. and WOLKOVICH, Elizabeth M., 2016. Climate change decouples drought from early wine grape harvests in France. Nature Climate Change. July 2016. Vol. 6, no. 7, p. 715-719. DOI 10.1038/nclimate2960. COOK, G. D., DIXON, J. R. and LEOPOLD, A. C., 1964. Transpiration: Its Effects on Plant Leaf Temperature. Science. 1964. Vol. 144, no. 3618, p. 546-547. DOI 10.1126/science.144.3618.546. DAUX, Valérie, YIOU, Pascal, LE ROY LADURIE, Emmanuel, MESTRE, Olivier and CHEVET, Jean-Michel, 2007. Température et dates de vendanges en France. In: Réchauffement climatique, quels impacts probables sur les vignobles?. Online. Beaune: INRAE. 2007. p. 9. [Accessed 26 July 2022]. Available from: https://hal.inrae.fr/hal-02757837/document DELOIRE, Alain, ZEBIC, O., BERNARD, N., BRENON, Emmanuel and HUNTER, JJ, 2005. Influence de l'etat hydrique de la vigne sur le style de vin. Revue Fr. d'Oenologie. 2005. Vol. 215, p. 11-15. DRY, Peter, 2009. Bunch exposure management. . 2009. P. 6. 73 DUCHÊNE, Eric, HUARD, Frédéric, DUMAS, Vincent, SCHNEIDER, Christophe and MERDINOGLU, Didier, 2010. The challenge of adapting grapevine varieties to climate change. Climate Research. 2010. Vol. 41, no. 3, p. 193-204. DOI 10.3354/cr00850. DUFOURCQ, Thierry, 2022. Estimation de l'état hydrique de la vigne. IFV Occitanie. Online. 2022. [Accessed 15 June 2022]. Available from: https://www.vignevin-occitanie.com/fiches-pratiques/estimation-de-letat-hydrique-de-la-vigne/ DÜRING, H. and DAVTYAN, A., 2002. Developmental changes of primary processes of photosynthesis in sun-and shade-adapted berries of two grapevine cultivars. VITIS - Journal of Grapevine Research. 2002. Vol. 41, no. 2, p. 63-63. DOI 10.5073/vitis.2002.41.63-67. E-PHY, 2022. Sokalciarbo WP. Online. 2022. [Accessed 9 August 2022]. Available from: https://ephy.anses.fr/ppp/sokalciarbo-wp EPHYTIA, 2022. Dégâts liés au froid. Online. 2022. [Accessed 28 July 2022]. Available from: http://ephytia.inra.fr/fr/C/21521/Di-gno-Leg-Basses-temperatures-gele EVENO, Maëlle, PLANCHON, Olivier, OSZWALD, Johan, DUBREUIL, Vincent and QUÉNOL, Hervé, 2016. Variabilité et changement climatique en France de 1951 à 2010 : analyse au moyen de la classification de Köppen et des «types de climats annuels ». Climatologie. 2016. Vol. 13, p. 47-70. DOI 10.4267/climatologie.1203. FONDRIEST, 2010. What is Photosynthetically Active Radiation? Environmental Monitor. Online. 2010. [Accessed 17 May 2022]. Available from: https://www.fondriest.com/news/photosyntheticradiation.htm FRAGA, Helder, AMRAOUI, Malik, MALHEIRO, Aureliano, MOUTINHO PEREIRA, José, EIRAS-DIAS, José, SILVESTRE, José and SANTOS, João, 2014. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing. 2014. Vol. 47, p. 753-771. DOI 10.5721/EuJRS20144743. FRANCEAGRIMER, 2020. L'histoire de la vigne et du vin. FranceAgriMer - établissement national des produits de l'agriculture et de la mer. Online. 2020. [Accessed 2 May 2022]. Available from: https://www.franceagrimer.fr/filieres-Vin-et-cidre/Vin/La-filiere-en-bref/Mieux-connaitre-le-vin/L-histoire-de-la-vigne-et-du-vin GAMBETTA, Joanna M., HOLZAPFEL, Bruno P., STOLL, Manfred and FRIEDEL, Matthias, 2021. Sunburn in Grapes: A Review. Frontiers in Plant Science. 2021. Vol. 11, p. 21. DOI 10.3389. GARCIA DE CORTAZAR, Iñaki, 2006. Adaptation du modèle STICS à la vigne (Vitis vinifera L. ) : utilisation dans le cadre d'une étude d'impact du changement climatique à l'échelle de la France. Online. Thèse de doctorat. École nationale supérieure agronomique (Montpellier). [Accessed 26 June 2022]. Available from: https://www.theses.fr/2006ENSA0030 GARRIDO, Andreia, SERÔDIO, João, DE VOS, Ric, CONDE, Artur and CUNHA, Ana, 2019. Influence of Foliar Kaolin Application and Irrigation on Photosynthetic Activity of Grape Berries. Agronomy. November 2019. Vol. 9, no. 11, p. 685. DOI 10.3390/agronomy9110685. GAVIGLIO, Christophe, 2022. L'effeuillage de la vigne. IFV Occitanie. Online. 2022. [Accessed 14 June 2022]. Available from: https://www.vignevin-occitanie.com/fiches-pratiques/leffeuillage-de-la-vigne/ GLENN, D. Michael and YURI, Jose Antonio, 2013. Photosynthetically active radiation (PAR)×ultraviolet radiation (UV) interact to initiate solar injury in apple. Scientia Horticulturae. 2013. Vol. 162, p. 117-124. DOI 10.1016/j.scienta.2013.07.037. 74 GLENN, D.M., COOLEY, Nicola, WALKER, Rob, CLINGELEFFER, Peter and SHELLIE, Krista, 2010. Impact of Kaolin Particle Film and Water Deficit on Wine Grape Water Use Efficiency and Plant Water Relations. Hortscience: A Publication of the American Society for Horticultural Science. 2010. Vol. 45, no. 8, p. 11. DOI 10.21273/HORTSCI.45.8.1178. GLENN, D.M. and PUTERKA, Gary, 2010. Particle Films: A New Technology for Agriculture. Horticultural Reviews. 2010. Vol. 31, p. 45. DOI 10.1002/9780470650882.ch1. GRANT, Olga, OCHAGAVÍA, H., BALUJA, J., DIAGO, Maria-Paz and TARDAGUILA, Javier, 2016. Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis Vinifera L.). Journal of Horticultural Science and Biotechnology. 2016. Vol. 91, p. 44-55. DOI 10.1080/14620316.2015.1110991. GREER, Dennis, ROGIERS, Suzy and STEEL, Chris, 2006. Susceptibility of Chardonnay grapes to sunburn. Vitis. 2006. Vol. 45, no. 3, p. 147-148. GUTIÉRREZ-JURADO, Hugo A. and VIVONI, Enrique R., 2013. Ecogeomorphic expressions of an aspect-controlled semiarid basin: II. Topographic and vegetation controls on solar irradiance. Ecohydrology. 2013. Vol. 6, no. 1, p. 24-37. DOI 10.1002/eco.1263. HACHETTE, 2009. Le Guide Hachette des Vins 2010. . Hachette Pratique. Paris: Hachette. ISBN 978-2-01237514-7. HANNAH, Lee, ROEHRDANZ, Patrick R., IKEGAMI, Makihiko, SHEPARD, Anderson V., SHAW, M. Rebecca, TABOR, Gary, ZHI, Lu, MARQUET, Pablo A. and HIJMANS, Robert J., 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences. 2013. Vol. 110, no. 17, p. 6907-6912. DOI 10.1073/pnas.1210127110. HERRING, David, 2021. Climate Change: Global Temperature Projections | NOAA Climate.gov. Cimate.gov. Online. 2021. [Accessed 9 May 2022]. Available from: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections HULANDS, S., GREER, D. H. and HARPER, J. D. I., 2014. The interactive effects of temperature and light intensity on Vitis vinifera cv. «Semillon» grapevines. II. Berry ripening and susceptibility to sunburn at harvest. European Journal of Horticultural Science. 2014. Vol. 79, no. 1, p. 1-7. JACKSON, Ray D., IDSO, S., REGINATO, Robert and PINTER, Paul, 1981. Canopy Temperature as a Crop Water Stress Indicator. Water Resources Research.
1981. Vol. 17, no. 4, p. 1133-1138. JENKS, Matthew A. and ASHWORTH, Edward N., 1999. Horticultural Reviews - Plant Epicuticular Waxes: Function, Production, and Genetics. . Jules Janick. Canada: John Wiley & Sons. Horticultural Reviews. ISBN 0471-25445-2. Google-Books-ID: Vi4t_pOo7lQC JIANG, Ji-Mou, LIN, Yong-Xiang, CHEN, Yi-Yong, DENG, Chao-Jun, GONG, Hui-Wen, XU, Qi-Zhi, ZHENG, Shao-Quan and CHEN, Wei, 2015. Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period. Food Chemistry. 2015. Vol. 176, p. 388-395. DOI 10.1016/j.foodchem.2014.12.076. JONES, Gregory V. and WEBB, Leanne B., 2010. Climate Change, Viticulture, and Wine: Challenges and Opportunities. Journal of Wine Research. 2010. Vol.
21, no. 2-3, p. 103-106. JONES, Gregory V., WHITE, Michael A., COOPER, Owen R. and STORCHMANN, Karl, 2005. Climate Change and Global Wine Quality. Climatic Change. 2005. Vol. 73, no. 3, p. 319-343. DOI 10.1007/s10584-005-4704-2. 75 JOUBERT, Chandré, YOUNG, Philip R., EYÉGHÉ-BICKONG, Hans A. and VIVIER, Melané A., 2016. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions. Frontiers in Plant Science. Online. 2016. Vol. 7. [Accessed 9 June 2022]. DOI https://doi.org/10.3389/fpls.2016.00786. KELLER, Markus, 2020. The Science of Grapevines Ed. 3. . Elsevier Science. ISBN 978-0-12-816365-8. LAFON, Cathy, 2021. Canicules et pics de chaleur: de 1947 à 2020, les précédentes vagues de chaleur dans la région. Sud Ouest. Online. 2021. [Accessed 21
April 2022]. Available from: LAL, Narayan and SAHU, Nisha, 2017. Management Strategies of Sun Burn in Fruit Crops-A Review. International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 6, p. 1126-1138. DOI 10.20546/ijcmas.2017.606.131. LEEUWEN, Cornelis van and DARRIET, Philippe, 2016. Le changement climatique en viticulture: les leviers d'adaptation au vignoble. In: Assises des Vins du Sud-ouest. Online. Toulouse: Institut Français de la Vigne et du Vin (IFV). 2016. p. 32. [Accessed 26 June 2022]. Available from: https://hal.inrae.fr/hal-02743208 LEEUWEN, Cornelis van, TRÉGOAT, Olivier, CHONÉ, Xavier, BOIS, Benjamin, PERNET, David and GAUDILLÈRE, Jean-Pierre, 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? OENO One. 2009. Vol. 43, no. 3, p. 121-134. DOI 10.20870/oeno-one.2009.43.3.798. LIVIU MIHAI, Irimia, PATRICHE, Cristian and QUÉNOL, Hervé, 2013. Viticultural Zoning: A Comparative Study Regarding the Accuracy of Different Approaches in Vineyards Climate Suitability Assessment. Cercetari Agronomice in Moldova (Agronomic Research in Moldavia). 2013. Vol. 46, no. 3, p. 95-106. DOI 10.2478/v10298-012-0097-3. LOBOS, G. A., ACEVEDO-OPAZO, C., GUAJARDO-MORENO, A., VALDES-GOMEZ, H., TAYLOR, J. A. and LAURIE, V. F., 2015. Effects of kaolin-based particle film and fruit zone netting on Cabernet Sauvignon grapevine physiology and fruit quality. Journal International des Sciences de la Vigne et du Vin. 2015. Vol. 49, no. 2, p. 137-144. DOI 10.20870/oeno-one.2015.49.2.86. LOUSSERT, Perrine, 2017. Caractérisation de la viticulture irriguée par la télédétection en contexte de changement climatique: application aux vignobles de la province de Mendoza en Argentine. Online. Thèse de doctorat. Rennes: Université Bretagne Loire Rennes 2. [Accessed 26 June 2022]. Available from: https://tel.archives-ouvertes.fr/tel-01968041/document MALLON, Kevin, ASSADIAN, Francis and FU, Bo, 2017. Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan. Energies. 2017. Vol. 10, p. 943. DOI 10.3390/en10070943. MANN, Michael and SELIN, Henrik, 2022. Global Warming. Encyclopedia Britannica. 2022. P. 48. MCKENZIE, Richard, SMALE, Dan, BODEKER, Greg and CLAUDE, Hans, 2003. Ozone profile differences between Europe and New Zealand: Effects on surface UV irradiance and its estimation from satellite sensors. Journal of Geophysical Research: Atmospheres. Online. 2003. Vol. 108, no. D6. [Accessed 17 May 2022]. DOI 10.1029/2002JD002770. MORATA, Antonio, 2018. Red Wine Technology. . Elsevier Science. ISBN 978-0-12-814399-5. MUGANU, Massimo, BELLINCONTRO, Andrea, BARNABA, Federico E., PAOLOCCI, Marco, BIGNAMI, Cristina, GAMBELLINI, Gabriella and MENCARELLI, Fabio, 2011. Influence of Bunch Position in the Canopy on Berry Epicuticular Wax during Ripening and on Weight Loss during Postharvest Dehydration. American Journal of Enology and Viticulture. 2011. Vol. 62, no. 1, p. 91-98. DOI 10.5344/ajev.2010.10012. 76 OJEDA, Hernan and SAURIN, Nicolas, 2014. L'irrigation de précision de la vigne : méthodes, outils et stratégies pour maximiser la qualité et les rendements de la vendange en économisant de l'eau. Innovations Agronomiques. 2014. Vol. 38, p. 97-108. OLIVARES-SOTO, Héctor, BASTÍAS, Richard M., CALDERÓN-ORELLANA, Arturo and LÓPEZ, María Dolores, 2020. Sunburn control by nets differentially affects the antioxidant properties of fruit peel in `Gala' and `Fuji' apples. Horticulture, Environment, and Biotechnology. 1 April 2020. Vol. 61, no. 2, p. 241-254. DOI 10.1007/s13580-020-00226-w. OU, Changrong, DU, Xiaofen, SHELLIE, Krista, ROSS, Carolyn and QIAN, Michael C., 2010. Volatile compounds and sensory attributes of wine from Cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film. Journal of Agricultural and Food Chemistry. 22 December 2010. Vol. 58, no. 24, p. 12890-12898. DOI 10.1021/jf102587x. PALLIOTTI, Alberto, TOMBESI, Sergio, SILVESTRONI, Oriana, LANARI, Vania, GATTI, Matteo and PONI, Stefano, 2014. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae. 2014. Vol. 178, p. 43-54. DOI 10.1016/j.scienta.2014.07.039. PASTORE, Chiara, ZENONI, Sara, FASOLI, Marianna, PEZZOTTI, Mario, TORNIELLI, Giovanni Battista and FILIPPETTI, Ilaria, 2013. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biology. 22 February 2013. Vol. 13, no. 1, p. 30. DOI 10.1186/1471-2229-13-30. PAVLOUEK, P. and KUMTA, M., 2011. Profiling of primary metabolites in grapes of interspecific grapevine varieties: sugars and organic acids. Czech Journal of Food Sciences. 2011. Vol. 29, no. No. 4, p. 361-372. DOI 10.17221/257/2010-CJFS. PEREIRA, L., PERRIER, Alain, ALLEN, Richard and ALVES, Isabel, 1999. Evapotranspiration: Review of concepts and future trends. Journal of Irrigation and Drainage Engineering. 1999. P. 45-51. PORTE, Etienne, 2020. Comment identifier une situation à risque dans un contexte de dérèglement climatique dans le Médoc?. . Rapport. Angers: Ecole Supérieure d'Agricultures d'Angers. PREZMAN, Fanny, 2022. Le rapport feuilles/fruits ou indice SECV/PR. IFV Occitanie. Online. 2022. [Accessed 3 August 2022]. Available from: https://www.vignevin-occitanie.com/fiches-pratiques/le-rapport-feuilles-fruits/ RIOU, C., VALANCOGNE, C. and PIERI, P., 1989. Un modèle simple d'interception du rayonnement solaire par la vigne - vérification expérimentale. Agronomie. 1989. Vol. 9, no. 5, p. 441-450. DOI 10.1051/agro:19890502. ROSENQUIST, Janet K. and MORRISON, Janice C., 1989. Some Factors Affecting Cuticle and Wax Accumulation on Grape Berries. American Journal of Enology and Viticulture. 1 January 1989. Vol. 40, no. 4, p. 241-244. ROUSSEY, Catherine, DELPUECH, Xavier, RAYNAL, Marc, AMARDEILH, Florence, BERNARD, Stéphan, JONQUET, Clément and NOÛS, Camille, 2021. Description sémantique des stades de développement phénologique des plantes, cas d'étude de la vigne. In: 32èmes Journées Francophones d'Ingénierie des Connaissances (IC). Online. Bordeaux: Plate-Forme Intelligence Artificielle (PFIA'21). 2021. p. 30-38. Available from: https://hal-emse.ccsd.cnrs.fr/emse-03260085/file/actes_IC_CH_PFIA2021_30-38.pdf RUBAN, Alexander V., 2016. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage1. Plant Physiology. April 2016. Vol. 170, no. 4, p. 1903- 1916. DOI 10.1104/pp.15.01935. 77 RUSTIONI, Laura, MILANI, Clara, PARISI, Simone and FAILLA, Osvaldo, 2015. Chlorophyll role in berry sunburn symptoms studied in different grape (Vitis vinifera L.) cultivars. Scientia Horticulturae. 2015. Vol. 185, p. 145-150. DOI 10.1016/j.scienta.2015.01.029. RUSTIONI, Laura, ROCCHI, Letizia, GUFFANTI, Eugenio, COLA, Gabriele and FAILLA, Osvaldo, 2014. Characterization of Grape (Vitis vinifera L.) Berry Sunburn Symptoms by Reflectance. Journal of Agricultural and Food Chemistry. 2014. Vol. 62, no. 14, p. 3043-3046. DOI 10.1021/jf405772f. SALLES, Denis and LE TREUT, Hervé, 2017. Comment la région Nouvelle Aquitaine anticipe le changement climatique ? Sciences Eaux & Territoires. 2017. Vol. Numéro 22, no. 1, p. 14-17. DOI 10.3917/set.022.0014. SANTOS, João A., FRAGA, Helder, MALHEIRO, Aureliano C., MOUTINHO-PEREIRA, José, DINIS, Lia-Tânia, CORREIA, Carlos, MORIONDO, Marco, LEOLINI, Luisa, DIBARI, Camilla, COSTAFREDA-AUMEDES, Sergi, KARTSCHALL, Thomas, MENZ, Christoph, MOLITOR, Daniel, JUNK, Jürgen, BEYER, Marco and SCHULTZ, Hans R., 2020. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences. 2020. Vol. 10, no. 9, p. 3092. DOI 10.3390/app10093092. SCHAEFFER, Anne, 2018. Table de correspondance des différentes échelles de mesure de la concentration en sucres des moûts. Laffort. Online. 2018. [Accessed 3 August 2022]. Available from: https://laffort.com/table-de-correspondance-des-differentes-echelles-de-mesure-de-la-concentration-en-sucres-des-mouts/ SCHRADER, Lawrence, KAHN, Cindy and ELFVING, Don, 2009. Sunburn Browning Decreases At-Harvest Internal Fruit Quality of Apples (Malus domestica Borkh.). International Journal of Fruit Science. 2009. Vol. 9, p. 425-437. DOI 10.1080/15538360903378781. SERRANO, Eric, 2018. L'effeuillage de la vigne: synthèse de quatre années d'études menées en Midi-Pyrénées. Institut Français de la Vigne et du Vin. 2018. P. 5. SHELLIE, Krista and GLENN, D. M., 2008. Wine grape response to kaolin particle film under deficit and well-watered conditions. International Symposium on Irrigation of Horticultural Crops. 2008. Vol. 792, no. 5, p. 587- 591. DOI 10.17660/ACTAHORTIC.2008.792.69. SHORT, L. R. and WOOLFOLK, E. J., 1956. Plant Vigor as a Criterion of Range Condition. Journal of Range Management. 1956. Vol. 9, no. 2, p. 66-69. DOI 10.2307/3894551. SMART, Richard E., 1985. Principles of Grapevine Canopy Microclimate Manipulation with Implications for Yield and Quality. A Review. American Journal of Enology and Viticulture. 1985. Vol. 36, no. 3, p. 230-239. SMART, Richard E. and SINCLAIR, Thomas R., 1976. Solar heating of grape berries and other spherical fruits. Agricultural Meteorology. 1976. Vol. 17, no. 4, p. 241-259. DOI 10.1016/0002-1571(76)90029-7. SOLOVCHENKO, Alexei, 2010. Manifestations of the Buildup of Screening Pigments in the Optical Properties of Plants. In: SOLOVCHENKO, Alexei (ed.), Photoprotection in Plants: Optical Screening-based Mechanisms. Online. Berlin, Heidelberg: Springer. p. 89-118. Springer Series in Biophysics. [Accessed 29 June 2022]. ISBN 978-3-642-13887-4. SOUTHEY, J.M. and JOOSTE, J.H., 1991. The Effect of Grapevine Rootstock on the Performance of Vitis vinifera L. ( cv. Colombard) on a Relatively Saline Soil. South African Society for Enology and Viticulture. 1991. Vol. 12, no. 1, p. 10. DOI https://doi.org/10.21548/12-1-2222. SPAYD, S. E., TARARA, J. M., MEE, D. L. and FERGUSON, J. C., 2002. Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera cv. Merlot Berries. American Journal of Enology and Viticulture. 2002. Vol. 53, no. 3, p. 171-182. 78 SUAT, Irmak, 2019. Soil Water Content- and Soil Matric Potential-Based Irrigation Trigger Values for Different Soil Types. CropWatch. Online. 2019. [Accessed 9 June
2022]. Available from: SUEHIRO, Yuka, MOCHIDA, Keisuke, ITAMURA, Hiroyuki and ESUMI, Tomoya, 2014. Skin Browning and Expression of PPO, STS, and CHS Genes in the Grape Berries of `Shine Muscat.' Journal of the Japanese Society for Horticultural Science. 2014. Vol. advpub, p. CH-095. DOI 10.2503/jjshs1.CH-095. SUTER, Bruno, TRIOLO, Roberta, PERNET, David, DAI, Zhanwu and VAN LEEUWEN, Cornelis, 2019. Modeling Stem Water Potential by Separating the Effects of Soil Water Availability and Climatic Conditions on Water Status in Grapevine (Vitis vinifera L.). Frontiers in Plant Science. 2019. Vol. 10, no. 22. DOI https://doi.org/10.3389/fpls.2019.01485. THIERY, Denis and CHUCHE, Julien, 2007. Réflexion sur le devenir d'insectes du vignoble dans le contexte d'un réchauffement climatique global. . Rapport. Villenave d'Ornon: INRA-ENITAB. TONIETTO, Jorge and CARBONNEAU, Alain, 2004. A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology. 2004. Vol. 124, no. 1, p. 81-97. DOI 10.1016/j.agrformet.2003.06.001. UNITED NATIONS, 2022. En quoi consistent les changements climatiques? United Nations. Online. 2022. [Accessed 19 August 2022]. Available from: https://www.un.org/fr/climatechange/what-is-climate-change VARLET-GRANCHER, C., GOSSE, Ghislain, CHARTIER, M., SINOQUET, Herve, BONHOMME, Raymond and ALLIRAND, J. M., 1989. Mise au point: rayonnement solaire absorbe ou intercepte par un couvert vegetal. Agronomie. 1989. Vol. 9, no. 5, p. 419. VERDENAL, Thibaut, ZUFFEREY, Vivian, DIENES-NAGY, Agnès, BOURDIN, Gilles, GINDRO, Katia, VIRET, Olivier and SPRING, Jean-Laurent, 2019. Timing and Intensity of Grapevine Defoliation: An Extensive Overview on Five Cultivars in Switzerland. American Journal of Enology and Viticulture. 1 October 2019. Vol. 70, no. 4, p. 427-434. DOI 10.5344/ajev.2019.19002. VINEVIEW, 2022. Vine Vigor Products | Scientifically Calibrated Vigor Mapping. VineView. Online. 2022. [Accessed 6 June 2022]. Available from: https://vineview.com/data-products/vine-vigor-products/ WEBB, L.b., WHETTON, P.h. and BARLOW, E.w.r., 2007. Modelled impact of future climate change on the phenology of winegrapes in Australia. Australian Journal of Grape and Wine Research. 2007. Vol. 13, no. 3, p. 165-175. DOI 10.1111/j.1755-0238.2007.tb00247.x. WILLIAMS, L. E. and ARAUJO, F. J., 2002. Correlations among Predawn Leaf, Midday Leaf, and Midday Stem Water Potential and their Correlations with other Measures of Soil and Plant Water Status in Vitis vinifera. Journal of the American Society for Horticultural Science. 2002. Vol. 127, no. 3, p. 448-454. DOI 10.21273/JASHS.127.3.448. XLSTAT, 2022a. ANOVA à un facteur et tests de comparaisons multiples dans Excel. Online. 2022. [Accessed 28 July 2022]. Available from: https://help.xlstat.com/fr/6598-one-way-anova-multiple-comparisons-excel-tutorial XLSTAT, 2022b. Régression linéaire simple dans Excel. Online. 2022. [Accessed 30 July 2022]. Available from: https://help.xlstat.com/fr/6705-regression-lineaire-simple-dans-excel YAZICI, Keziban and KAYNAK, Lami, 2009. Effects of kaolin and shading treatments on sunburn on fruit of hicaznar cultivar of pomegranate (Punica granatum L. cv. Hicaznar). Acta Horticulturae. 2009. Vol. 818, no. 818, p. 167-174. DOI 10.17660/ActaHortic.2009.818.24. 79 Glossary
ANOVA A statistical tool used to analyze the differences among series of values. Anthocyanins Plant pigment accumulated in berry epidermal layers. Defoliation The process of removing leaves from plants. Kaolin White clay in powder form with refractive properties. LSD Fisher test Function of an ANOVA used to detect significant differences between series. Phenological stage Phase of plant development at a given time. Polyphenols Plant compounds whose production is radiation-induced. Porosity A measure of blank spaces in the canopy's vegetation. P-value A probability value that a result (here the LSD Fisher test results) will correspond to observed results. Relative humidity Measure of water vapor in air as a percentage of the amount needed for saturation. Row Orientation A measure of row position based on solar activity. Vigor A measure of plant height and density. Water Potential A measure to estimate the plant's hydric condition. 80 List of figures Figure 1: Observed symptoms of low-intensity (left) and high-intensity (right) sunburn at Château Margaux in June 2022 9 Figure 2: Types of solar radiations (Mallon et al., 2017) 11 Figure 3: Map of the Bordeaux vineyard, and location of the Margaux appellation (red box) (CIVB, 2020) 16 Figure 4: Wines produced and sold by Château Margaux (Château Margaux, 2022) 19 Figure 5: Scheme of the scientific process to verify hypotheses 25 Figure 6: Scheme of the experimental plan of Les 4 Vents Sable, including the repartition of the modalities in the parcel, the plots chosen, and the captors location 27 Figure 7: Scheme of the experimental plan of Jean Brun Ouest, including the repartition of the modalities in the parcel, the plots chosen, and the captors location 27 Figure 8: Photograph of Cabernet Sauvignon leaves before (on le left) and after (on the right) the first kaolin spraying in June 2022 28 Figure 9: The same plant, before and after moderate defoliation in June 2022 28 Figure 10: Photographs of a HOBO captor position next to a bunch of grapes 32 Figure 11: Evolution of the maximum, minimum and average temperatures as well as the rainfall for the 2022 growing season, from March the 1st until August the 22nd, based on the Enclos weather station data. 40 Figure 12: Comparison of the 10°C base temperature sum for the last 5 growing seasons, from March the 1st to August the 22th, based on the Margaux Sencrop weather station data 41 Figure 13: Evolution of predawn leaf water potential for both studied parcels 43 Figure 14: Evolution of stem water potential for both studied parcels 44 Figure 15: Leaf temperature per modality for both parcels, taken with an infrared thermometer, between July the 11th and August the 9th 45 Figure 16: Comparison of temperature data between 20 potential usable HOBO captors, on the 2nd and 3rd of June 46 Figure 17: Comparison of light data between 20 potential usable HOBO captors, on the 2nd and 3rd of June 47 Figure 18: Comparison of temperature data between 10 potential usable TinyTag captors, on the 23rd and 24th of May 47 Figure 19: Comparison of relative humidity data between 10 potential usable TinyTag captors, on the 23rd and 24th of May 48 Figure 20: Tinytag captors temperature and humidity results on the JBO parcel between July the 17th and the 19th 48 Figure 21: Comparison of average bunch temperature per modality at different times of the day, on the sun-exposed side of the canopy, taken by an infrared manual thermometer, between June the 13th and August the 3rd 49 81 Figure 22: Multiple linear regression model from XLSTAT between the IR thermometer bunch temperature and the HOBO captor recorded light and temperature data for the control modality in the Les 4 Vents Sable parcel 50 Figure 23: Evolution of bunch temperature on the JBO parcel between the 17th and the 19th of June 2022 51 Figure 24: Evolution of bunch temperature on the JBO parcel between the 12th and the 15th of July 2022 51 Figure 25: Evolution of bunch temperature on the JBO parcel between the 10th and the 12th of August 2022 51 Figure 26: Evolution of bunch sunburn frequency and intensity on JBO and L4VS, from June the 22nd to August the 17th 53 Figure 27: Evolution of damages linked with sunburn on bunches per modality, from June the 22nd to August the 17th 53 Figure 28: Evolution of leaf sunburn frequency and intensity on JBO and L4VS, from June the 22nd to August the Xth 55 Figure 29: Evolution of damages linked with sunburn on leaves per modality, from June the 22nd to August the 17th 55 Figure 30: Evolution of mass and volume of 100 berries between July the 21st and August the 22nd, for the L4VS parcel 56 Figure 31: Analysis results of berry maturity per modality, between July the 21st and August the 22nd, for the L4VS parcel 57 Figure 32: External laboratory analysis results of anthocyanins and phenolic compounds per modality, between August the 3rd and the 10th 58 82 List of tables Table 1: Viticultural climates classification based on the Huglin Index (Tonietto and Carbonneau, 2004; Liviu Mihai et al., 2013) 10 Table 2: Comparison of the number of days where the maximum temperature (Tmax) was higher than 30°C, for the last 5 growing season, from March the 1st to August the 22th, according to the Margaux Sencrop weather station data 41 Table 3: Dates of key phenological stages for the study 42 Table 4: Results of the LSD Fisher Test on Enhanced Vegetation Indexes (EVI) of the different modalities in the JBO parcel 42 Table 5: Results of the LSD Fisher Test on Enhanced Vegetation Indexes (EVI) of the different modalities in the L4VS parcel 42 Table 6: Results of the LSD Fisher Test on Leaf Area Indexes (LAI) of the different modalities in the JBO parcel 43 Table 7: Results of the LSD Fisher Test on Leaf Area Indexes (LAI) of the different modalities in the L4VS parcel 43 Table 8: Results of the LSD Fisher Test on August the 11th Stem Water Potentials (SWP) of the different modalities in the JBO parcel 44 Table 9: Results of the LSD Fisher Test on August the 11th Stem Water Potentials (SWP) of the different modalities in the L4VS parcel 44 Table 10: Results of the LSD Fisher test on leaf temperature of the different modalities in the JBO parcel 45 Table 11: Results of the LSD Fisher test on leaf temperature of the different modalities in the L4VS parcel 45 Table 12: Results of the LSD Fisher test on bunch temperature of the different modalities in the JBO parcel 49 Table 13: Results of the LSD Fisher test on bunch temperature of the different modalities in the L4VS parcel 49 Table 18: Evolution of the bunch number per parcel before and after thinning operations 52 Table 14: Results of the LSD Fisher test on berry sunburn damages of the different modalities in the JBO parcel 54 Table 15: Results of the LSD Fisher test on berry sunburn damages of the different modalities in the L4VS parcel 54 Table 16: Results of the LSD Fisher test on leaf sunburn damages of the different modalities in the JBO parcel 56 Table 17: Results of the LSD Fisher test on leaf sunburn damages of the different modalities in the L4VS parcel 56 Table 19: Estimated economic margin made from both studied modalities based on the results on the JBO parcel 64 Table 20: Estimated economic margin made from both studied modalities based on the results on the L4VS parcel 65 83 Table of content Acknowledgments 2 Summary 3 Acronyms and abbreviations 4 Introduction 6 PART 1: CONTEXTUAL ELEMENTS 7
3.1 The business sector of Château Margaux 15 3.1.1 The French wine industry 15 3.1.2 The wine industry in Bordeaux 15 84 3.2 Presentation of Château Margaux 16 3.2.1 Appellation and terroir of Château Margaux 16 3.2.2 The vineyard management 17 3.2.2.1 Current vineyard management 17 3.2.2.2 Vineyard management strategies in a context of climate change 18 3.2.3 The place of climate change in the company's organization 18 3.3 The wines produced by Château Margaux in a context of climate change 19 3.3.1 Presentation of the wines of Château Margaux 19 3.3.2 The typicity of the wines of Château Margaux 19 3.3.3 The impact of climate change on the wines of Château Margaux 20
5.1 Problem 23 5.2 Hypotheses 24 PART 2: MATERIAL AND METHODS 26
3.1 Characterization of the 2022 vintage 29 3.2 Grapevine physiology 29 85 3.2.1 Phenological stages 29 3.2.2 Plant vigor 30 3.2.3 Vegetation porosity 30 3.2.4 Grapevine water status 30 3.2.4.1 Predawn Leaf Water Potential 30 3.2.4.2 Midday Stem Water Potential 31 3.2.4.3 Leaf surface temperature 31 3.3 Bunches microclimate 32 3.3.1 Temperature of the bunch of grapes 32 3.3.2 Luminosity of the microclimate 33 3.4 Quantification of sunburn symptoms 33 3.4.1 Bunch counting 34 3.4.2 Quantification of bunch sunburn symptoms 34 3.4.3 Quantification of leaves sunburn symptoms 34 3.5 Berries quality evaluation 35 3.5.1 Berries mass and volume 35 3.5.2 Primary and secondary metabolites 35 3.5.2.1 Primary metabolites 35 3.5.2.2 Secondary metabolites 36 3.6 Managerial and organizational implications 36 4. Statistical data processing of the results 37 PART 3: RESULTS 40
4.1 Reduce error risks by calibrating the captors 46 4.1.1 Infrared thermometer calibration 46 4.1.2 HOBO captors' calibration 46 86 4.1.3 TinyTag captors' calibration 47 4.2 Climate of the parcels 48 4.3 Sun-exposed bunches of grapes punctual temperatures comparison 49 4.4 Bunch temperature model 50 4.4.1 Bunch temperature calibration 50 4.4.2 Bunch temperature model application 51
PART 4: DISCUSSION AND PROPOSITIONS 60
3.1 Conditions of the study 61 3.1.1 The influence of the weather conditions 61 3.1.2 The homogeneity of the studied parcels 61 3.2 Results of the study 62 3.2.1 Sunburn solutions and their impact on grapevine physiology 62 3.2.1.1 Plant hydric state and leaves temperature 62 3.2.1.2 Bunch temperature and sunburn 62 3.2.2 Kaolin and early defoliation effects on sunburn symptoms 62 3.2.3 Effect of studied modalities on berry quality 62 3.3 Technical limits of the study 63 3.3.1 Technical limits linked with kaolin sprayings 63 3.3.2 Technical limits linked with early defoliation 63 3.3.3 Other technical limits 63 3.4 Managerial limits of the study 64 3.5 Economic evaluation of the project 64 87 3.6 Limits linked with study size and duration 65 4. Propositions and study perspective 65 4.1 Prolongation of the study 66 4.2 Improvement of the experimental set-up 66 4.3 Extension of the study at the scale of the vineyard 66 4.4 Technical resources propositions 67 4.5 Managerial propositions 67 4.6 The use of inter-row cover crops against grape sunburn 67 4.7 Evolution of the PDO specifications to face climate change 68 Conclusion 69 References 70 Glossary 78 List of figures 79 List of tables 81 Table of content 82 Annexes 87 List of annexes 107 88 |
|