Study of tribological properties of titanium-based thin films applied to the rubbing parts of internal combustion engines piston( Télécharger le fichier original )par Khaled Chemaa Boumerdes University Faculty of Hydrocarbons and Chemistry - Master 2 2017 |
Résumé:De par leurs dimensions nanométriques, les couches minces présentent une très grande surface spécifique, une réactivité très élevée et des propriétés mécaniques, optiques et électroniques exceptionnelles. L'application de cette technologie en industrie des moteurs à combustion interne permet de réduire les pertes par frottement et usure avec une faible perte de matière ce qui influencer directement sur le coût, que ce soit a la phase de production ou de l'exploitation. Mots clés: Couche mince, dépôt physique en phase vapeur (PVD), propriétés tribologiques, pistons, moteurs à combustion interne. IV List of symbols List of symbols ??: Coefficient of linear expansion, Degree of ionization ratio, Stricking coefficient; ????: Melting temperature; ??: Thermal conductivity, mean free path, the wavelength; ??: Density; ????: Electrical resistivity; ??: Stresse; u: Poisson's ratio; ??: Constant of friction; w: Wave frequency; ?? : Molecular diameter; A: Area; A%: Breaking elongation; B : Number of intermolecular impacts; D??: Distance;
??: Rate of return of energy; h: Planck constant; H: hardness; HB: Brinell hardness; HV: Vickers hardness; icorr : Corrosion current density; k : Boltzmann constant; ????: Knusden number; ??: Molecule mass; N: Molecules number; ?? : Number density of the molecules; ??: Pressure; ??0 : The pressure at the initial instant; ????: Saturated vapor pressure; Q: Mass flow rat; ??: Radius; ??: Radius of the wear track; ????: Breaking strength; Re, Re0.2: Yield strength; ??: Time; T : Temperature; V List of symbols ??: Rate of propagation of pits, molecules speed; ?? : The volume; v??2 : The-root-mean-square speed of molecules; ????: The most probable speed of molecules; W??: Wear rate; VI
Books list
VII References References [ABE 97] ABELMANN L., LODDER C., Oblique evaporation and surface diffusion , Thin Solid Films, vol. 305, 1997; [ALL84] ALLEN A., DUDLEY B.R., MIDDLETON V., PARKER D.A., Prediction of Piston Ring Cylinder Bore Oil film Thickness in two Particular Engines and Correlation with Experiment Evidence, Bulletin of the JSME, 1984, n° C 73174; [AND02] ANDREETA E.R.M., RODRIGUES J.A., ANDREETA M.R.B., AGULLÓ-RUEDA F., HERNANDES A.C., Directional solidification of the Al2O3/GdAlO3 eutectic by laser melting technique, Céramique vol.48 No.305 São Paulo Jan./Feb./Mar. 2002; [BRO76] BROWN S R., HAMILTON G.M, Pressure Measurement between the Rings and Cylinder Liner of an Engine, Mechanical Engineering Publications, 1976; [BUC67] BUCKLEY, NASA-TMX-52 279 Oct 1967; [CHA 04] CHANG Y.Y., WANG D.Y., Corrosion behavior of CrN coatings enhanced by niobium ion implantation, Surface and Coatings Technology, vol. 188-189, 2004; [CHE94] CHENR C.C., LIANG X.T., TSE W.S., CHEN I.Y., and DUH J. G., Raman Spectra of Titanium Nitride Thin Films, chinese jornal of physics APRIL 1994; [CIE99] CIEMENS B. KUNG H. BARNETT S.A., Structure and strength of multilayers, MRS Bulletin p20-26 février 1999; [COU64] COURTEL R., métaux-corrosion-industrie n°474-475 1964; [DIT 91] DITCHBURN R.J., SMITH G.B., Useful angular selectivity in oblique columnar aluminum, J. Appl. Phys., vol. 69(6), 1991; [DON94] DONG J., CHEN G., LUO X., CHEN L, and SHI Z.F., A new concept formation of permeating layers from noactive anti-wear additives, Lubr. Eng., 1994; [DON 96] DONG L., SMITH R.W., SROLOVITZ D.J., A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition, J. Appl. Phys., vol. 80(10), 1996; [EUR/http] http://www.euralliage.com/aluminium.html; [EXP/http] https://expertsdefaillances.com; [FEN61] FENG I.M. and CHALK H., effect of gases and liquids in the lubrication and surface damage, Wear, 1961; [FOR70] FORBES E.S., The load carrying action of organo-sulphur compounds-a review, Wear, 1970; [FUR59] Furuhama S., A Dynamic Theory of Piston Ring Lubrication, Bulletin of JMSE, V2, 07, 1959; [FUR79] FURUHAMA S., TAKIGUCHI M., Measurement of Piston Frictional Force in Actual Operating Diesel Engine, SAE Transactions, 1979, n° 790855; [GEO79] GEORGES J.M., MARTIN J.M., MATHIA T., KAPSA P., MEILLE G. and MONTES H., Mechanism of boundary lubrication with Zinc dithiophosphates, Wear, 1979; [GER/http] https://german.alibaba.com/product-detail/82mm-hatz-tractor-e780-enigne-piston- 60185120100.html; [GRA08] GRAS René, tribologie, Dunod 2008; [GRO71] GROSZEK A.J., Activation of iron surfaces by chemisorption of some EP and anti-wear additives, wear 1971; [HOD 98] HODGKINSON I., Wu Q.H., MCPHUN A., Incremental-growth model for the deposition of spatially modulated thin film nanostructures, J. Vac. Sci. Technol, vol. B16(5), 1998; VIII References [HOL58] HOLM, J. F. ARCHARD, Wear 7, Elsevier 1958-1959; [HOV 02] HOVSEPIAN P.E., MÛNZ W.D., Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings, Vacuum, vol. 69(1-3), 2002; [HOV 05] HOVSEPIAN P.E., LEWIS D.B., Luo Q., FARINOTTI A., Corrosion résistance of CrN/NbN superlattice coatings grown by various physical vapor déposition techniques, Thin Solid Films, vol. 488(1-2) 2005; [IOP/http] http://iopscience.iop.org/article/10.1088/2043-6262/2/3/035014; [LIN 03a] LINTYMER J., Etude de l'influence de la microstructure sur les propriétés mécaniques et électriques de couches de chrome en zigzag élaborées par pulvérisation cathodique, Thèse n° 993, université de Franche-Comté, France, 2003; [LIN 04] LINTYMER J., MARTIN N., CHAPPE J.M., DELOBELLE P., TAKADOUM J., Influence of zigzag microstructure on mechanical and electrical properties of chromium multilayered thin films, Surf. Coat. Technol., vol. 180-181, 2004; [LIN 05] LINTYMER J., MARTIN N., CHAPPE J.M., DELOBELLE P., TAKADOUM J., Nanoindentation of chromium zigzag thin films sputter deposited, Surf. Coat. Technol, vol. 200, 2005; [MAL 96] MALAURIE A., BESSAUDOU A., Numerical simulation of the characteristics of the différent metallic species falling on the growing film in DC magnetron sputtering, Thin Solid Films, vol. 286, 1996; [MBI 95] MBISE G.W., NIKLASSON G.A., GRANQVIST C.G., Obliquely evaporated Cr films with large angular selectivity, J. Appl. Phys., vol. 77(6), p. 2816-2818, 1995; [MES84] MESSIER R., GIRI A. P., and ROY R. A., Revised structure zone model for thin film physical structure, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984; [MOV69] MOVCHAN B.A., DEMCHISHIN A.V., Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide, Fiz. Metal. Metallovcd, vol. 28(4), 1969; [MYE90] MYERS J.E., BORMAN G.L., MYERS P.S., Measurement of Oil Film Thickness and Liner Temperature at Top Ring Reversal in a Diesel Engine, SAE Paper, 1990, n° 900813; [PAN85] PANDAZARAS C., Modélisation théorique et expérimentale du frottement segments-chemise, Thèse Doc. Inge: Institut Supérieur des Matériaux et de la Construction Mécanique, 1985; [PAP98] PAPAY A.G., Antiwear and Extreme-pressure Additives in Lubricants, Lubrication science, 1998; [RAY 74] Raynal B., Les essais des moteurs à combustion interne, IFP- ENSPM Edition Aout 1974; [RES/http] https://www.researchgate.net/figure/261063964_fig3_Figure-3-Raman-Spectra-of-Tungsten- Oxide-Nanowires; [REI07] REINHARD C, EHIASARIAN A.P., HOVSEPIAN P.E., CrN/NbN superlattice structured coatings with enhanced corrosion résistance achieved by high power impulse magnetron sputtering interface pre- treatment, Thin Solid Films, vol. 515(7-8), 2007; [RIC82] RICHEZ M.F., CONSTANTS B., WINQUISH K.,Theoretical an Experimental Study of Ring-Liner Friction (Proceeding of 9 the Leeds Lyon) Symposium on Tribology and Traction, sep 1982; [ROG61] ROGOWSKI A.R., Method of Measurement of the Instantaneous Friction of Piston-Rings in a Firing Engine, SAE Paper 1961, n°379F; [SET 01] SETO M.W., DlCK B., BRETT M.J., Microsprings and microcantilevers: studies of mechanical response », J. Micromech. Microeng, vol. 11, 2001; [TAI 92] TAIT R.N., SMY T., BRETT J.M., Structural anisotropy in oblique incidence thin metal films, J. Vac. Sci. Technol, vol. A(10)4,1992; IX References [TAK08/A]Jamal Takadoum, Nanomatériaux, traitement et fonctionnalisation des surfaces, p258; [TAK08/B] Jamal Takadoum, Nanomatériaux, traitement et fonctionnalisation des surfaces, p257; [TAN07] TANNOUS Johny, Lubrification par les composés organo-soufrés en phase gazeuse : Approche de la lubrification dans la coupe des métaux, thèse de doctorat Présentée devant L'école centrale de Lyon 2007; [THO 74] THORNTON J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol, vol. 11(4), 1974; [THO77] THORNTON J.A. high rate thick film growth, annual rev. of mater, sci., vol.7, p. 239-260, 1977; [TRO 03] TROFIMOV V.I., Morphology évolution in a growing film, Thin Solid Films, vol. 428, 2003; [WHE78] WHEELER D., X-ray photoelectron spectroscopic study of surface chemistry of dibenzyl disulfide on steel under mild and severe wear conditions, Wear, 1978; [WEI00] WEI H., LIUZ., YAOK., The influence of the incidence energy of deposited particles on the growth morphology of thin films, Vacuum, vol. 57, 2000. [URA87] URAS H.M, Patterson (D), Effect of Some Pistons Variables on Piston and Ring Assembly Friction, SAE Paper, 1987, n°870088; X Figures list List of Figures Fig.1.1 MAHLE GMBH-pistons and engine testing 2nd edition- springer vieweg - STUTTGART GERMANY. Fig.1.2 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMANY. Fig.1.3 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMANY. Fig.1.4 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMANY. Fig.1.5 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMANY. Fig.1.6 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMAny. Fig.1.7 MAHLE GMBH - pistons and engine testing 2nd edition-springer vieweg-STUTTGART GERMAny. Fig.1.8 J.AYEL - M.BORN - lubrifiant et fluids pour l'automobile- French oil institute- Technip edition. Fig.1.9 J.AYEL - M.BORN - lubrifiant et fluids pour l'automobile- French oil institute- Technip edition. Fig.1.10 J.AYEL - M.BORN - lubrifiant et fluids pour l'automobile- French oil institute- Technip edition. Fig.1.11 J.AYEL - M.BORN - lubrifiant et fluids pour l'automobile- French oil institute- Technip edition. Fig.1.12 https://expertsdefaillances.com Fig.1.13 https://expertsdefaillances.com Fig.1.14 https://expertsdefaillances.com Fig.2.1. Aluminum Alloys: Structure and Properties / L. F. Mondolfo / BUTTERWORTHS LONDON- BOSTON 1976 Fig.3.1. Vide poussé au laboratoire et dans l'industrie Fig.3.2. Traité des matériaux Tome 4 : Analyse des surfaces Fig.3.3. Techniques du vide/ Simone Cassette/ cours sur internet Fig.3.4. Vide poussé au laboratoire et dans l'industrie Fig.3.5. Dépôts physiques : techniques, microstructure et propriétés Fig.3.6. Dépôts physiques : techniques, microstructure et propriétés Fig.3.7. Techniques d'ingénieur : Traité Matériaux Métalliques traitement de surface des métaux par voix sèche et en milieu fondu Fig.3.8. Techniques d'ingénieur : Traité Matériaux Métalliques traitement de surface des métaux par voix sèche et en milieu fondu Fig.3.9. institut-numerique.org XI Figures list Fig.3.10. institut-numerique.org Fig.3.11. institut-numerique.org Fig.3.12. Institut-numerique.org Fig.3.13. Institut-numerique.org Fig.3.14. Traité des matériaux tome 4 : analyse des surfaces Fig.3.15. Traité des matériaux tome 4 : analyse des surfaces Fig.3.16. Traité des matériaux tome 4 : analyse des surfaces Fig.3.17. Traité des matériaux tome 4 : analyse des surfaces Fig.3.18. Traité des matériaux tome 4 : analyse des surfaces Fig.3.19. Nanomatériaux, traitement et fonctionnalisation des surfaces Fig.3.20. Nanomatériaux, traitement et fonctionnalisation des surfaces Fig.3.21. Nanomatériaux, traitement et fonctionnalisation des surfaces XII Tables list List of Tables Table1.1. Lubrification par les composés organo-soufrés en phase gazeuse : Approche de la lubrification dans la coupe des métaux, Johny TANNOUS, Thèse de doctorat de l'école centrale de Lyon, 2007 Table2.1. Aide-mémoire Science Des Matériaux / Michel Dupeux / Dunod 2008 Table2.2. Aide-mémoire Science Des Matériaux / Michel Dupeux / Dunod 2008 Table2.3. Techniques de l'Ingénieur : Traité Matériaux Métalliques Données Numériques sur les Alliages d'Aluminium de Transformation / Roger Develay Table2.4. Techniques de l'Ingénieur : Traité Matériaux Métalliques Données Numériques sur les Alliages d'Aluminium de Transformation / Roger Develay Table2.5. Aluminum Alloys: Structure and Properties / L. F. Mondolfo / BUTTERWORTHS LONDON-BOSTON 1976 Table3.1. Vide poussé au laboratoire et dans l'industrie Table3.2. Traitements et revêtements de surface des métaux Table3.3. Handbook of chemical vapor deposition Table3.4. Techniques d'ingénieur : Traité Matériaux Métalliques traitement de surface des métaux par voix sèche et en milieu fondu Table3.5. Dépôts physiques : techniques, microstructure et propriétés Table3.6. Nanomatériaux, traitement et fonctionnalisation des surfaces Table3.7. Traitements et revêtements de surface des métaux XIII Table of Contents Table of Contents Acknowledgement II
Table of Contents XIII Introduction 01 Literature review 04 Chapter 1: Overview on engine's piston 06 1.1. Piston types 07 1.1.1. Pistons for four-stroke gasoline engines 07 1.1.2. Pistons for diesel engines 08 1.2. Different forms of wear 10 Chapter 2: Aluminum and its alloys 21 2.1. Property Of non-alloyed aluminum (1000 series) 22 2.2. Aluminum alloys 22 2.2.1. Different classes of aluminum alloys 23 2.2.2. Physical properties of aluminum alloys 23 2.2.3. Mechanical properties of aluminum alloys 23 2.2.4. Standards defining aluminum alloys 26 2.3. Aluminum-Silicon Alloys (4000 series) 28 XIV Table of Contents Chapter 3: Vapor deposition and thin layer characterization techniques... 30 3.1. Physical bases of the vacuum technique...31 3.1.1. Vacuum and gaseous phase of the material... 31 3.1.2. Movement and speed of gaseous molecules.................................................................. 32 3.1.3. Basics of vacuum technology............................................................................................ 34 3.1.4. Duration of evacuation process... 353.2. The theory of plasmas... 36 3.3. Coating in the vapor phase (PVD, CVD)... 37 3.3.1. Chemical vapor deposition (CVD) techniques... 38 3.3.2. Physical vapor deposition processes (PVD)... 39 3.3.3. Physical mechanism of a thin layer formation .................................................................. 41 3.3.4. Thin film morphology... 44 3.4. Methods of microstructural characterization...46 3.4.1. Chemical characterization methods... 47 3.4.2. Crystallographic characterization techniques... 49 3.4.3. Microstructural characterization methods... 50 3.4.4. Characterization of mechanical properties... 52 3.5. Properties of thin films deposits 56 Chapter 4: Experimental Procedures.... 57 4.1. Determination of the sample grade... 58 4.2. Preparation of samples... 59 4.2.1. Samples Cutting... 60 4.2.2. Samples polishing... 60 4.2.3. Chemical cleaning... 60 4.3. Thin film elaboration process... 60 4.3.1. Description of PVD sputtering installation and working parameters.............................. 61 4.3.2. Description of PVD evaporation installation and working parameters........................... 62 4.4. X-ray diffraction... 64 4.4.1. Characteristics of the device... 64 4.4.2. Working Principle... 64 4.5. Raman Spectroscopy... 65 4.6. Scanning electronic microscope (SEM)...66 4.7. The nanoindentation... 67 4.8. The tribometer analysis... 69 4.9. Electrochemical techniques... 71 4.9.1. Equipment... 71 4.9.2. Establishment of EVANS diagrams... 72 4.9.3. Diagram E=f (log/i): EVANS Diagram.................................................................................. 73 XV Table of Contents Chapter 5: Results and Analysis 75 5.1. Analysis of XRD results 76 5.2. Analysis of RAMAN results 78 5.3. Morphological analysis 81 5.4. Interpretation of nanoindentation results 82 5.5. Interpretation of tribometer results 87 5.5.1. The coefficient of friction 87 5.5.2. Wear Rate 91 5.6. Corrosion test results 93 Chapter 6: Solidworks mechanical analysis of the thin layer 95 6.1. Initial data 97 6.2. Finite element analysis of the sample.................................................................................... 97 6.3. Analysis of the result 100 Conclusion 101 Appendices AI 1 Appendix I: nanoindentation charge-discharge curves AI 2 Appendix II: Nanoindentation results . AII 1 |
|