NOMENCLATURE
Lettres
C : Constante de la loi de paroi. Cx : Coefficient de
trainé
D : Diamètre du cylindre
E : Constante empirique dépend de la rugosité des
parois. Fr : Nombre de Froude
G : Accélération de la pesanteur.
I : Intensité turbulente. Ks : Rugosité
équivalente.
K : Constante universelle de Von Karman. Kp :
énergie cinétique turbulente au point p.
L : Echelle de longueur.
P : Pression.
Re : Nombre de Reynolds.
T : Trainé
U : Vitesse débitante. ui : Vitesse instantanée.
U+ : Vitesse adimensionnelle.
Y+ : Distance adimensionnelle.
Um.: vitesse moyenne
H : la hauteur d'eau
Symboles
: Masse volumique de l'eau.
: Épaisseur d'une couche limite.
Viscosité dynamique.
y : Viscosité cinématique.
K : Énergie cinétique turbulente.
: Taux de dissipation de l'énergie cinétique
turbulente.
: Viscosité dynamique turbulente.
k : Nombre de Prandtl.
ij :: Symbole de Kronecker.
Sij : tenseur de déformation
Mémoire de Master Recherche en physique.
Rédigé par Haroun Boukoun Abdoulaye Page viii
LISTE DES FIGURES
Figure 1 : Ecoulement rampant à
Re=0.16. Visualisation S. Taneda tirée de van Dyke
(1982)
3
Figure 2 : Écoulement rampant à
Re=26. Visualisation S. Taneda tirée de van Dyke (1982)
3
Figure 3 : Ecoulement instationnaire 2D
à Re=105. Visualisation S. Taneda tirée de
van
Dyke (1982) 4
Figure 4 : Régime t turbulent à
Re=10000 Visualisation S. Taneda tirée de van Dyke
(1982)
5
Figure 5 : La rugosité d'une paroi
caractérisée par la hauteur k (a) 7
Figure 6 : la rugosité
équivalente de grains de sable d'une hauteur ks (b). 7
Figure 7 : Couche limite sur un obstacle
(Cousteix (1989)). 8
Figure 8 : Profil de vitesse longitudinale
moyenne dans une couche limite turbulente sur
plaque plane sans gradient de pression, d'après Clauser
(1956). 11
Figure 9 : L'effet d'un gradient de pression
sur le développement de la couche limite. 12
Figure 10 : Géométrie et
coordonné du système 21
Figure 11 : Schéma
représentatif de l'algorithme SIMPLE 35
Figure 12 : Evolution des résidus au
cours des itérations 36
Figure 13 : Champs de vitesse adimensionnelle
U+ = f (X+, Y+) pour Re = 9.60 103 38
Figure 14 : Champs de vitesse adimensionnelle
U+ = f (X+, Y+) pour Re = 1.97 104 38
Figure 15 : Champs de vitesse adimensionnelle
V+ = f (X+, Y+) pour Re = 2.28 104 38
Figure 16 : Champs de vitesse adimensionnelle
V+ = f (X+, Y+) pour Re = 2.61 104 39
Figure 17 : Champs de vitesse adimensionnelle
V+ = f (X+, Y+) pour Re = 2.74 104 39
Figure 18 : Profils de vitesse longitudinale
adimensionnelle U+= f (Y+) 40
Figure 19 : Profils de vitesse longitudinale
adimensionnelle U+= f (Y+) 40
Figure 20 : Profils de vitesse longitudinale
adimensionnelle U+= f (Y+) 41
Figure 21 : Epaisseur de la couche limite
dynamique o = f(X+) 41
Figure 22 : Champs de pression
adimensionnelle P+ = f (X+, Y+) pour Re = 9.60 103 42
Figure 23 : Champs de pression
adimensionnelle P+ = f (X+, Y+) pour Re = 1.97 104 43
Figure 24 : Champs de pression
adimensionnelle P+ = f (X+, Y+) pour Re = 2.28 104 43
Figure 25 : Champs de pression
adimensionnelle P+ = f (X+, Y+) pour Re = 2.58 104 43
Figure 26 : Champs de pression
adimensionnelle P+ = f (X+, Y+) pour Re = 2.74 104 44
Figure 27 : Profils de pression dynamique
adimensionnelle P+= f (Y+) 44
Figure 28 : Profils de pression dynamique
adimensionnelle P+= f (Y+) 45
Figure 29 : Profils de vitesse longitudinale
pour Y+=0.2 et Y+=0.48 46
Figure 30 : Profils de vitesse longitudinale
pour Y+=0.78 et Y+=0.8 46
Mémoire de Master Recherche en physique.
Rédigé par Haroun Boukoun Abdoulaye Page ix
|