WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Investissement dans le secteur agricole et la croissance économique

( Télécharger le fichier original )
par Luc Shindano
Université de Kinshasa RDC - Licence 2010
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

I. TEST DE LA RACINE UNITAIRE

A. POUR LA VARIABLE PRODUCTION AGRICOLE

· AVEC TENDANCE ET INTERCEPTE

Tableau 1a

Null Hypothesis: PROAGR has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 0 (Automatic based on HQ, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.660479

 0.2583

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(PROAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:34

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

PROAGR(-1)

-0.430072

0.161652

-2.660479

0.0124

C

11.03045

3.799839

2.902873

0.0069

@TREND(1974)

0.364510

0.206275

1.767105

0.0874

 
 
 
 
 
 
 
 
 
 

R-squared

0.211096

    Meandependent var

0.809240

Adjusted R-squared

0.158503

    S.D. dependent var

6.389971

S.E. of regression

5.861723

    Akaike info criterion

6.461272

Sumsquaredresid

1030.794

    Schwarz criterion

6.597318

Log likelihood

-103.6110

    F-statistic

4.013723

Durbin-Watson stat

2.056277

    Prob(F-statistic)

0.028534

 
 
 
 
 
 
 
 
 
 

· AVEC INTERCEPTE

Tableau 1b

Null Hypothesis: PROAGR has a unit root

 

Exogenous: Constant

 
 

Lag Length: 0 (Automatic based on HQ, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.142536

 0.2302

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(PROAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:38

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

PROAGR(-1)

-0.185990

0.086808

-2.142536

0.0401

C

7.909342

3.477683

2.274313

0.0300

 
 
 
 
 
 
 
 
 
 

R-squared

0.128980

    Meandependent var

0.809240

Adjusted R-squared

0.100883

    S.D. dependent var

6.389971

S.E. of regression

6.059085

    Akaike info criterion

6.499686

Sumsquaredresid

1138.088

    Schwarz criterion

6.590384

Log likelihood

-105.2448

    F-statistic

4.590462

Durbin-Watson stat

2.393468

    Prob(F-statistic)

0.040113

 
 
 
 
 
 
 
 
 
 

· SANS TENDANCE ET INTERCEPTE

Tableau 1c

Null Hypothesis: PROAGR has a unit root

 

Exogenous: None

 
 

Lag Length: 0 (Automatic based on HQ, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

 0.076450

 0.7002

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(PROAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:42

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

PROAGR(-1)

0.002140

0.027992

0.076450

0.9395

 
 
 
 
 
 
 
 
 
 

R-squared

-0.016354

    Meandependent var

0.809240

Adjusted R-squared

-0.016354

    S.D. dependent var

6.389971

S.E. of regression

6.442009

    Akaike info criterion

6.593392

Sumsquaredresid

1327.983

    Schwarz criterion

6.638741

Log likelihood

-107.7910

    Durbin-Watson stat

2.481910

 
 
 
 
 
 
 
 
 
 


B. POUR DGP

Ø AVEC TENDANCE ET INTERCEPTE

Tableau 2a

Null Hypothesis: DGP has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.814939

 0.2025

Test critical values:

1% level

 

-4.273277

 
 

5% level

 

-3.557759

 
 

10% level

 

-3.212361

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DGP)

 
 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:47

 
 

Sample (adjusted): 1976 2007

 
 

Included observations: 32 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DGP(-1)

-0.433588

0.154031

-2.814939

0.0087

C

-0.024219

0.020677

-1.171294

0.2510

@TREND(1974)

0.000519

0.000955

0.543030

0.5913

 
 
 
 
 
 
 
 
 
 

R-squared

0.214857

    Meandependent var

0.002613

Adjusted R-squared

0.160709

    S.D. dependent var

0.053795

S.E. of regression

0.049283

    Akaike info criterion

-3.093422

Sumsquaredresid

0.070435

    Schwarz criterion

-2.956009

Log likelihood

52.49475

    F-statistic

3.967980

Durbin-Watson stat

2.148064

    Prob(F-statistic)

0.029975

 
 
 
 
 
 
 
 
 
 

Ø AVEC INTERCEPTE

Tableau 2b

Null Hypothesis: DGP has a unit root

 

Exogenous: Constant

 
 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.797319

 0.0699

Test critical values:

1% level

 

-3.653730

 
 

5% level

 

-2.957110

 
 

10% level

 

-2.617434

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DGP)

 
 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:51

 
 

Sample (adjusted): 1976 2007

 
 

Included observations: 32 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DGP(-1)

-0.420679

0.150387

-2.797319

0.0089

C

-0.014615

0.010585

-1.380700

0.1776

 
 
 
 
 
 
 
 
 
 

R-squared

0.206874

    Meandependent var

0.002613

Adjusted R-squared

0.180436

    S.D. dependent var

0.053795

S.E. of regression

0.048700

    Akaike info criterion

-3.145805

Sumsquaredresid

0.071151

    Schwarz criterion

-3.054196

Log likelihood

52.33288

    F-statistic

7.824995

Durbin-Watson stat

2.156376

    Prob(F-statistic)

0.008911

 
 
 
 
 
 
 
 
 
 

Ø SANS TENDANCE ET INTERCEPTE

Tableau 2c

Null Hypothesis: DGP has a unit root

 

Exogenous: None

 
 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-2.416612

 0.0173

Test critical values:

1% level

 

-2.639210

 
 

5% level

 

-1.951687

 
 

10% level

 

-1.610579

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DGP)

 
 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:53

 
 

Sample (adjusted): 1976 2007

 
 

Included observations: 32 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DGP(-1)

-0.299872

0.124088

-2.416612

0.0217

 
 
 
 
 
 
 
 
 
 

R-squared

0.156475

    Meandependent var

0.002613

Adjusted R-squared

0.156475

    S.D. dependent var

0.053795

S.E. of regression

0.049407

    Akaike info criterion

-3.146698

Sumsquaredresid

0.075673

    Schwarz criterion

-3.100894

Log likelihood

51.34717

    Durbin-Watson stat

2.304358

 
 
 
 
 
 
 
 
 
 


C. POUR DEPAGR

Ø AVEC TENDANCE ET INTERCEPTE

Tableau 3a

Null Hypothesis: DEPAGR has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.956123

 0.0206

Test critical values:

1% level

 

-4.262735

 
 

5% level

 

-3.552973

 
 

10% level

 

-3.209642

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DEPAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 09:56

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DEPAGR(-1)

-0.685278

0.173220

-3.956123

0.0004

C

415.8084

500.6159

0.830594

0.4128

@TREND(1974)

6.618707

25.55455

0.259003

0.7974

 
 
 
 
 
 
 
 
 
 

R-squared

0.343464

    Meandependent var

16.35373

Adjusted R-squared

0.299695

    S.D. dependent var

1658.712

S.E. of regression

1388.081

    Akaike info criterion

17.39574

Sumsquaredresid

57803041

    Schwarz criterion

17.53179

Log likelihood

-284.0297

    F-statistic

7.847185

Durbin-Watson stat

2.053624

    Prob(F-statistic)

0.001815

 
 
 
 
 
 
 
 
 
 

Ø AVEC INTERCEPTE

Tableau 3b

Null Hypothesis: DEPAGR has a unit root

 

Exogenous: Constant

 
 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-4.013997

 0.0039

Test critical values:

1% level

 

-3.646342

 
 

5% level

 

-2.954021

 
 

10% level

 

-2.615817

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DEPAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 10:00

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DEPAGR(-1)

-0.679993

0.169406

-4.013997

0.0004

C

524.3780

269.5330

1.945506

0.0608

 
 
 
 
 
 
 
 
 
 

R-squared

0.341996

    Meandependent var

16.35373

Adjusted R-squared

0.320770

    S.D. dependent var

1658.712

S.E. of regression

1367.035

    Akaike info criterion

17.33737

Sumsquaredresid

57932294

    Schwarz criterion

17.42806

Log likelihood

-284.0666

    F-statistic

16.11217

Durbin-Watson stat

2.060567

    Prob(F-statistic)

0.000351

 
 
 
 
 
 
 
 
 
 

Ø SANS TENDANCE ET INTERCEPTE

Tableau 3c

Null Hypothesis: DEPAGR has a unit root

 

Exogenous: None

 
 

Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-3.368170

 0.0014

Test critical values:

1% level

 

-2.636901

 
 

5% level

 

-1.951332

 
 

10% level

 

-1.610747

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DEPAGR)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 10:02

 
 

Sample (adjusted): 1975 2007

 
 

Included observations: 33 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

DEPAGR(-1)

-0.525234

0.155941

-3.368170

0.0020

 
 
 
 
 
 
 
 
 
 

R-squared

0.261656

    Meandependent var

16.35373

Adjusted R-squared

0.261656

    S.D. dependent var

1658.712

S.E. of regression

1425.281

    Akaike info criterion

17.39196

Sumsquaredresid

65005625

    Schwarz criterion

17.43731

Log likelihood

-285.9673

    Durbin-Watson stat

2.168888

 
 
 
 
 
 
 
 
 
 




II. STATIONNARISATION

1. PROAGR

Tableau 4

Null Hypothesis: D(PROAGR) has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 0 (Automatic based on AIC, MAXLAG=1)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-7.272982

 0.0000

Test critical values:

1% level

 

-4.273277

 
 

5% level

 

-3.557759

 
 

10% level

 

-3.212361

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(PROAGR,2)

 

Method: Least Squares

 
 

Date: 02/08/11 Time: 10:09

 
 

Sample (adjusted): 1976 2007

 
 

Included observations: 32 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(PROAGR(-1))

-1.294116

0.177935

-7.272982

0.0000

C

3.392932

2.441423

1.389735

0.1752

@TREND(1974)

-0.134012

0.122359

-1.095236

0.2824

 
 
 
 
 
 
 
 
 
 

R-squared

0.645981

    Meandependent var

-0.161800

Adjusted R-squared

0.621566

    S.D. dependent var

10.29887

S.E. of regression

6.335557

    Akaike info criterion

6.619292

Sumsquaredresid

1164.039

    Schwarz criterion

6.756705

Log likelihood

-102.9087

    F-statistic

26.45821

Durbin-Watson stat

1.992453

    Prob(F-statistic)

0.000000

 
 
 
 
 
 
 
 
 
 

2. DGP

Tableau 5

Null Hypothesis: D(DGP) has a unit root

 

Exogenous: Constant, Linear Trend

 

Lag Length: 0 (Automatic based on AIC, MAXLAG=1)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-7.478007

 0.0000

Test critical values:

1% level

 

-4.284580

 
 

5% level

 

-3.562882

 
 

10% level

 

-3.215267

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 
 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller Test Equation

 

Dependent Variable: D(DGP,2)

 
 

Method: Least Squares

 
 

Date: 02/08/11 Time: 10:11

 
 

Sample (adjusted): 1977 2007

 
 

Included observations: 31 afteradjustments

 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

D(DGP(-1))

-1.330589

0.177934

-7.478007

0.0000

C

0.004161

0.021473

0.193784

0.8477

@TREND(1974)

1.63E-05

0.001069

0.015230

0.9880

 
 
 
 
 
 
 
 
 
 

R-squared

0.666580

    Meandependent var

0.000373

Adjusted R-squared

0.642764

    S.D. dependent var

0.089013

S.E. of regression

0.053202

    Akaike info criterion

-2.937670

Sumsquaredresid

0.079253

    Schwarz criterion

-2.798897

Log likelihood

48.53389

    F-statistic

27.98910

Durbin-Watson stat

1.943418

    Prob(F-statistic)

0.000000

 
 
 
 
 
 
 
 
 
 

III. ESTIMATION DU VAR (1, 2)

Tableau 6

 VectorAutoregressionEstimates

 

 Date: 02/08/11 Time: 10:25

 

 Sample (adjusted): 1978 2007

 

 Included observations: 30 afteradjustments

 Standard errors in ( ) & t-statistics in [ ]

 
 
 
 
 
 
 
 
 

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

DDEPAGR(-1)

-0.814325

 1.50E-06

 6.61E-05

 

 (0.17685)

 (6.5E-06)

 (0.00066)

 

[-4.60454]

[ 0.22942]

[ 0.10086]

 
 
 
 

DDEPAGR(-2)

-0.832832

 4.75E-06

 0.001259

 

 (0.16419)

 (6.1E-06)

 (0.00061)

 

[-5.07227]

[ 0.78260]

[ 2.06778]

 
 
 
 

DDGP(-1)

-8540.506

-0.082077

-61.53642

 

 (6204.80)

 (0.22933)

 (23.0067)

 

[-1.37643]

[-0.35790]

[-2.67472]

 
 
 
 

DDGP(-2)

-5739.593

 0.142985

-68.10713

 

 (5148.71)

 (0.19030)

 (19.0908)

 

[-1.11476]

[ 0.75139]

[-3.56753]

 
 
 
 

PROAGR(-1)

-42.08029

 0.005522

 0.342133

 

 (47.6143)

 (0.00176)

 (0.17655)

 

[-0.88377]

[ 3.13781]

[ 1.93790]

 
 
 
 

PROAGR(-2)

 5.957302

-0.003956

 0.598815

 

 (48.5368)

 (0.00179)

 (0.17997)

 

[ 0.12274]

[-2.20521]

[ 3.32732]

 
 
 
 

C

 1561.353

-0.065019

 3.914426

 

 (888.638)

 (0.03284)

 (3.29497)

 

[ 1.75702]

[-1.97965]

[ 1.18800]

 
 
 
 
 
 
 
 

 R-squared

 0.621751

 0.460338

 0.862851

 Adj. R-squared

 0.523077

 0.319557

 0.827073

 Sum sq. resids

 33301566

 0.045491

 457.8438

 S.E. equation

 1203.285

 0.044473

 4.461643

 F-statistic

 6.301087

 3.269877

 24.11675

 Log likelihood

-251.3669

 54.80349

-83.44812

 Akaike AIC

 17.22446

-3.186899

 6.029874

 Schwarz SC

 17.55141

-2.859953

 6.356821

 Meandependent

 18.10037

 0.001184

 40.72979

 S.D. dependent

 1742.387

 0.053914

 10.72909

 
 
 
 
 
 
 
 

 Determinant resid covariance (dof adj.)

 33953.93

 

 Determinantresid covariance

 15300.65

 

 Log likelihood

-272.2392

 

 Akaike information criterion

 19.54928

 

 Schwarz criterion

 20.53012

 
 
 
 
 
 
 
 
 




MODELE ESTIME

VAR Model:

===============================

DDEPAGR = C(1,1)*DDEPAGR(-1) + C(1,2)*DDEPAGR(-2) + C(1,3)*DDGP(-1) + C(1,4)*DDGP(-2) + C(1,5)*PROAGR(-1) + C(1,6)*PROAGR(-2) + C(1,7)

DDGP = C(2,1)*DDEPAGR(-1) + C(2,2)*DDEPAGR(-2) + C(2,3)*DDGP(-1) + C(2,4)*DDGP(-2) + C(2,5)*PROAGR(-1) + C(2,6)*PROAGR(-2) + C(2,7)

PROAGR = C(3,1)*DDEPAGR(-1) + C(3,2)*DDEPAGR(-2) + C(3,3)*DDGP(-1) + C(3,4)*DDGP(-2) + C(3,5)*PROAGR(-1) + C(3,6)*PROAGR(-2) + C(3,7)

VAR Model - Substituted Coefficients:

===============================

DDEPAGR = - 0.8143254508*DDEPAGR(-1) - 0.8328322976*DDEPAGR(-2) - 8540.505993*DDGP(-1) - 5739.592614*DDGP(-2) - 42.08029118*PROAGR(-1) + 5.957301744*PROAGR(-2) + 1561.353158

DDGP = 1.499565978e-006*DDEPAGR(-1) + 4.749231346e-006*DDEPAGR(-2) - 0.08207693164*DDGP(-1) + 0.1429850987*DDGP(-2) + 0.005521961363*PROAGR(-1) - 0.003955946462*PROAGR(-2) - 0.06501924005

PROAGR = 6.613903503e-005*DDEPAGR(-1) + 0.001258883355*DDEPAGR(-2) - 61.5364243*DDGP(-1) - 68.10712952*DDGP(-2) + 0.3421328785*PROAGR(-1) + 0.5988150581*PROAGR(-2) + 3.914425676

IV. ANALYSE DE LA CAUSALITE AU SENS DE GRANGER

Ø ENTRE LA CROISSANCE ECONOMIQUE ET LA PRODUCTION AGRICOLE

Tableau 7a

Pairwise Granger Causality Tests

 

Sample: 1974 2007

 

Lags: 2

 
 
 
 
 
 
 
 
 
 

  NullHypothesis:

Obs

F-Statistic

Probability

 
 
 
 
 
 
 
 

  PROAGR does not Granger Cause DDGP

30

 7.65138

 0.00256

  DDGP does not Granger Cause PROAGR

 10.8168

 0.00041

 
 
 
 
 
 
 
 

Ø ENTRE LA CROISSANCE ET LES DEPENCES EN K DANS LE SECTEUR AGRI

Ø Tableau 7b

Pairwise Granger Causality Tests

 

Sample: 1974 2007

 

Lags: 2

 
 
 
 
 
 
 
 
 
 

  NullHypothesis:

Obs

F-Statistic

Probability

 
 
 
 
 
 
 
 

  DDEPAGR does not Granger Cause DDGP

30

 1.22252

 0.31150

  DDGP does not Granger Cause DDEPAGR

 1.60190

 0.22152

 
 
 
 
 
 
 
 

Ø ENTRE DDEPGAGR ET PROAGR

Ø Tableau 7c

Pairwise Granger Causality Tests

 

Sample: 1974 2007

 

Lags: 2

 
 
 
 
 
 
 
 
 
 

  NullHypothesis:

Obs

F-Statistic

Probability

 
 
 
 
 
 
 
 

  PROAGR does not Granger Cause DDEPAGR

31

 1.95776

 0.16143

  DDEPAGR does not Granger Cause PROAGR

 6.30086

 0.00587

 
 
 
 
 
 
 
 

GRAPHIQUE 4

V. ANALYSE DES CHOCS OU INNOVATIONS EXOGENES AU MODELE

 
 
 
 
 
 
 
 

 Response of DDEPAGR:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

 1203.285

 0.000000

 0.000000

 

 (155.343)

 (0.00000)

 (0.00000)

 2

-789.3657

-245.7114

-163.2407

 

 (212.139)

 (208.737)

 (185.907)

 3

-307.3617

 224.2116

-82.75656

 

 (237.546)

 (234.965)

 (203.147)

 4

 699.5882

 285.8697

 112.9436

 

 (260.729)

 (227.090)

 (133.000)

 5

-410.6362

-215.5295

-15.83242

 

 (285.005)

 (217.618)

 (134.816)

 
 
 
 
 
 
 
 

 Response of DDGP:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

-0.020483

 0.039475

 0.000000

 

 (0.00768)

 (0.00510)

 (0.00000)

 2

 0.001443

-0.015238

 0.021421

 

 (0.00815)

 (0.00872)

 (0.00737)

 3

 0.009648

-0.002397

-0.010020

 

 (0.00812)

 (0.00837)

 (0.00660)

 4

 0.006763

-0.013199

 0.005732

 

 (0.00836)

 (0.00767)

 (0.00512)

 5

-0.011117

 0.005247

-0.006547

 

 (0.00634)

 (0.00612)

 (0.00545)

 
 
 
 
 
 
 
 

 Response of PROAGR:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

-0.369891

-2.172723

 3.879267

 

 (0.81318)

 (0.76178)

 (0.50081)

 2

 1.213479

-3.172537

 1.327225

 

 (0.92456)

 (0.89412)

 (0.70599)

 3

 2.962495

-4.153624

 1.448072

 

 (1.18192)

 (1.10813)

 (0.63052)

 4

 0.034193

-2.430057

 0.236898

 

 (0.91073)

 (1.13725)

 (0.83446)

 5

 0.371766

-2.042059

 1.181208

 

 (0.78481)

 (1.04624)

 (0.62599)

 
 
 
 
 
 
 
 

Cholesky Ordering: DDEPAGR DDGP PROAGR

 
 
 

Standard Errors: Analytic

 
 
 
 
 
 
 
 
 
 
 





VI. DECOMPOSITION DE LA VARIANCE DE L'ERREUR PREVISIONNELLE

 
 
 
 
 
 
 
 

 Response of DDEPAGR:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

 1203.285

 0.000000

 0.000000

 

 (155.343)

 (0.00000)

 (0.00000)

 2

-789.3657

-245.7114

-163.2407

 

 (212.139)

 (208.737)

 (185.907)

 3

-307.3617

 224.2116

-82.75656

 

 (237.546)

 (234.965)

 (203.147)

 4

 699.5882

 285.8697

 112.9436

 

 (260.729)

 (227.090)

 (133.000)

 5

-410.6362

-215.5295

-15.83242

 

 (285.005)

 (217.618)

 (134.816)

 
 
 
 
 
 
 
 

 Response of DDGP:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

-0.020483

 0.039475

 0.000000

 

 (0.00768)

 (0.00510)

 (0.00000)

 2

 0.001443

-0.015238

 0.021421

 

 (0.00815)

 (0.00872)

 (0.00737)

 3

 0.009648

-0.002397

-0.010020

 

 (0.00812)

 (0.00837)

 (0.00660)

 4

 0.006763

-0.013199

 0.005732

 

 (0.00836)

 (0.00767)

 (0.00512)

 5

-0.011117

 0.005247

-0.006547

 

 (0.00634)

 (0.00612)

 (0.00545)

 
 
 
 
 
 
 
 

 Response of PROAGR:

 
 
 

 Period

DDEPAGR

DDGP

PROAGR

 
 
 
 
 
 
 
 

 1

-0.369891

-2.172723

 3.879267

 

 (0.81318)

 (0.76178)

 (0.50081)

 2

 1.213479

-3.172537

 1.327225

 

 (0.92456)

 (0.89412)

 (0.70599)

 3

 2.962495

-4.153624

 1.448072

 

 (1.18192)

 (1.10813)

 (0.63052)

 4

 0.034193

-2.430057

 0.236898

 

 (0.91073)

 (1.13725)

 (0.83446)

 5

 0.371766

-2.042059

 1.181208

 

 (0.78481)

 (1.04624)

 (0.62599)

 
 
 
 
 
 
 
 

 Cholesky Ordering: DDEPAGR DDGP PROAGR

 
 
 

 Standard Errors: Analytic

 
 
 
 
 
 
 
 
 
 
 

GRAPHIQUE 5

précédent sommaire










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Soit réservé sans ostentation pour éviter de t'attirer l'incompréhension haineuse des ignorants"   Pythagore