WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Image to image translation with generative adversiale networks (translation of satelite image to Google maps image )


par Abel Azize Souna and Ilyes Chaki
Université Hassiba ben Bouali de Chlef  - Licence informatique 2022
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

4.2 Conception

Figure 4.3: Tensor Flow logo / Source[4]

Figure 4.4: Tkinter symbol /Source [5]

4.2 Conception

To further give a intuitive on the code implementation we will use the UML and particularly the class diagram to describe the structure of the model and the inner interaction between the sub-models.

4.3 The Maps Dataset

the maps data set contain two folders for the training and valuation data, the dataset for the pix2pix model is a couple of the source image(satellite image) and the target image(map image) 4.5 , in the implementation of the code we first unpack the data set then load it ,we feed the satellite image to the generator to transfer it to a map image,then we feed the generated image along with the original sattelite image to the discriminator ,then we feed a real data couple to train the discriminator ,for further explanation look at the previous chapter. here are some example of the used samples 4.5

29

4.4 Generator Implementation

(a) example 1 (b) example 2 (c) example 3

(d) example 4 (e) example 5 (f) example 6
Figure 4.5: Examples from the data set

4.4 Generator Implementation

Listing 4.1: encoder_block

1 def define_encoder_block(layer_in, n_filters, batchnorm=True):

2 init = RandomNormal(stddev=0.02)

3 g = Conv2D(n_filters, (4,4), strides=(2,2), padding='same',kernel_initializer=init

)(layer_in)

4 if batchnorm:

5 g = BatchNormalization()(g, training=True)

6 g = LeakyReLU(alpha=0.2)(g)

7 return g

Listing 4.2: decoder_block

1 def decoder_block(layer_in, skip_in, n_filters, dropout=True):

2 init = RandomNormal(stddev=0.02)

3 g = Conv2DTranspose(n_filters, (4,4), strides=(2,2), padding='same',

kernel_initializer=init)(layer_in)

4 g = BatchNormalization()(g, training=True)

5 if dropout:

6 g = Dropout(0.5)(g, training=True)

7 g = Concatenate()([g, skip_in])

8 g = Activation('relu')(g)

9 return g

Listing 4.3: generator

1 def define_generator(image_shape=(256,256,3)):

2 init = RandomNormal(stddev=0.02)

3 # image input

4 in_image = Input(shape=image_shape)

30

4.5 Discriminator Implementation

5 # encoder model: C64-C128-56-C512-C512-C512-C512-C512

6 e1 = define_encoder_block(in_image, 64, batchnorm=False)

7 e2 = define_encoder_block(e1, 128)

8 e3 = define_encoder_block(e2, 256)

9 e4 = define_encoder_block(e3, 512)

10 e5 = define_encoder_block(e4, 512)

11 e6 = define_encoder_block(e5, 512)

12 e7 = define_encoder_block(e6, 512)

13 # bottleneck, no batch norm and relu

14 b = Conv2D(512, (4,4), strides=(2,2), padding='same', kernel_initializer=init)(e7)

15 b = Activation('relu')(b)

16 # decoder model: CD512-CD1024-CD1024-C1024-C1024-C512-56-C128

17 d1 = decoder_block(b, e7, 512)

18 d2 = decoder_block(d1, e6, 512)

19 d3 = decoder_block(d2, e5, 512)

20 d4 = decoder_block(d3, e4, 512, dropout=False)

21 d5 = decoder_block(d4, e3, 256, dropout=False)

22 d6 = decoder_block(d5, e2, 128, dropout=False)

23 d7 = decoder_block(d6, e1, 64, dropout=False)

24 # output

25 g = Conv2DTranspose(3, (4,4), strides=(2,2), padding='same', kernel_initializer=

init)(d7)

26 out_image = Activation('tanh')(g)

27 # define model

28 model = Model(in_image, out_image)

29 return model

précédent sommaire suivant






Extinction Rebellion







Changeons ce systeme injuste, Soyez votre propre syndic



"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway