Conclusion
Dans ce mémoire, nous avons étudié les
systèmes lent-rapides déterministes puis stochastique et on a
introduit un exemple typique de ces système sont les résonances,
nous avons donné des exemples pratiques avec simulation.
Ce mémoire est consacré à l'étude
des systèmes de FitzHugh-Nagumo stochastiques qui ont été
introduits pour modéliser la transmission de l'influx nerveux dans un
neurone. Nous avons commencé par rappeler des résultats sur le
système déterministe associé afin de trouver les valeurs
des paramètres intéressants pour notre étude. Celles-ci
correspondent aux cas où le système admet au moins un point
d'équilibre stable et où le système est excitable.
Comme perspectives, on s'intéresse à
l'étude du comportement de solutions des systèmes lent-rapides
plus compliqués dans lesquels les coefficients du système de
FitzHugh-Nagumo (a, b, c) sont aléatoires, et dans ce cas, on introduit
d'autres approches probabilistes pour étudier ce système et voir
le comportement asymptotique puis la stabilité et la stabilisation.
Bibliographie
[1] .Damien .LANDON. Perturbation et excitabilité dans
des modèles stochastiques de transmission de linflux nerveux
[2] . B. van der Pol. A theory of the amplitude of free and
forced triode vibrations. Radio Rev. 1, 701-710 (1920).
[3] . J. Z. Su, J. Rubin, D. Terman. Effects of noise on
elliptic bursters. Nonlinearity 17, 133-157 (2004).
[4] . P. Hitczenko, G. S. Medvedev. Bursting oscillations
induced by small noise. SIAM J. Appl. Math. 69, 1359-1392 (2009)
[5] . R. Benzi, A. Sutera, A. Vulpiani. Stochastic
réonance in the thermohaline circulation. J. Phys. A 11, 453-457
(1981).
[6] . B. McNamara, K. Wiesenfeld. Theory of stochastic
réonance. Phys. Rev. A 39, 4854-4869 (1989).
[7] . M. I. Freidlin, A. D. Wentzell. Random Perturbations of
Dynamical Systems. Springer-Verlag, New York (1998).
[8] . N. Berglund, B. Gentz. The effect of additive noise on
dynamical hysteresis. Nonlinearity 15, 605-632 (2002).
[9] . N. Berglund, B. Gentz, C. Kuehn. Hunting French ducks
in a noisy environment. Journal of Differential Equations 252, 4786-4841
(2012).
[10] . W. Wang, A. J. Roberts. Average and deviation for
slow-fast stochastic partial differential equations. Journal of Differential
Equations 253, 1256-1286 (2012).
[11] A. N. Tihonov, Systems of différential equations
containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952),
575-586.
[12]
BIBLIOGRAPHIE 95
Neil Fenichel, Geometric singular perturbation theory for
ordinary differential equations, J. Differential Equations 31 (1979), no. 1,
53-98.
[13] Nils Berglund and Barbara Gentz, Beyond the FokkerPlanck
equation : Pathwise control of noisy bistable systems, J. Phys. A 35 (2002),
no. 9, 2057-2091.
[14] The effect of additive noise on dynamical hysteresis,
Nonlinearity 15 (2002), no. 3, 605-632.
[15] Metastability in simple climate models : Pathwise
analysis of slowly driven Langevin equations, Stoch. Dyn. 2 (2002), 327-356.
[16] Pathwise description of dynamic pitchfork bifurcations
with additive noise, Pro-bab. Theory Related Fields 122 (2002), no. 3,
341-388.
[17] A sample-paths approach to noise-induced
synchronization: Stochastic réonance in a double-well potential, Ann.
Appl. Probab. 12 (2002), 1419-1470.
[18] Geometric singular perturbation theory for stochastic
differential equations, J. Differential Equations 191 (2003), 1-54.
[19] On the noise-induced passage through an unstable
periodic orbit I : Two-level model, J. Statist. Phys. 114 (2004), 1577-1618.
[20] On the noise-induced passage through an unstable
periodic orbit II : The general case, In preparation, 2005.
[21] Y. Shimazu, K. Sugiyama, T. Kojima, and E. Tomida, Some
problems in ecology oriented environmentology. II. Terrestrial
environmentology, 1. Earth Sci. Nagoya Uniu. 20 :31-89 (1972).
[22] M. E. Gilpin, Enriched predator-prey systems :
Theoretical stability, Science 177902994 (1972).
[23] H. L. Smith, The interaction of steady state and Hopf
bifurcations in a two-predator-one-prey competition model, SIAM 1. Appl. Math.
42 :27-43 (1982).
[24] Richard Bellman, Introduction to matrix analysis,
McGrawHill, New York, 1960.
[25] L. S. Pontryagin and L. V. Rodygin. Approximate solution
of a system of ordinary differential equations involving a small parameter in
the derivatives. Soviet Math. Dokl., 1 :237240, 1960.
[26]
BIBLIOGRAPHIE 96
Roberto Benzi, Giorgio Parisi, Alfonso Sutera, and Angelo
Vulpiani, A theory of stochastic réonance in climatic change, SIAM J.
Appl. Math. 43 (1983), no. 3, 565-578.
[27] Luca Gammaitoni, Peter Hanggi, Peter Jung, and Fabio
Marchesoni, Stochastic réonance, Rev. Mod. Phys. 70 (1998), 223-287.
[28] Frank Moss and Kurt Wiesenfeld, The benefits of
background noise, Scientific American 273 (1995), 50-53.
[29] Kurt Wiesenfeld and Frank Moss, Stochastic
réonance and the benefits of noise: from ice ages to crayfish and
SQUIDs, Nature 373 (1995), 33-36.
[30] Roberto Benzi, Alfonso Sutera, and Angelo Vulpiani, The
mechanism of stochastic réonance, J. Phys. A 14 (1981), no. 11,
L453-L457.
[31] Richard Bellman, Introduction to matrix analysis,
McGrawHill, New York, 1960.
[32] Martin V. Day, On the exponential exit law in the small
parameter exit problem, Stochastics 8 (1983), 297-323.
[33] P. Imkeller and I. Pavlyukevich, Model reduction and
stochastic réonance, Stoch. Dyn. 2 (2002), no. 4, 463-506.
[34] J.-P. Eckmann and L. E. Thomas, Remarks on stochastic
réonance, J. Phys. A 15 (1982), L261-L266.
[35] Bruce McNamara and Kurt Wiesenfeld, Theory of stochastic
réonance, Phys. Rev. A 39 (1989), 4854-4869.
[36] Samuel Herrmann and Peter Imkeller, Barrier crossings
characterize stochastic réonance, Stoch. Dyn. 2 (2002), no. 3, 413-436,
Special issue on stochastic climate models.
[37] Ronald F. Fox, Stochastic réonance in a double
well, Phys. Rev. A 39 (1989), 4148-4153.
[38] Peter Jung and Peter Hänggi, Stochastic nonlinear
dynamics modulated by external periodic forces, Europhys. Letters 8 (1989),
505-510.
[39] Mark I. Freidlin, Quasi-deterministic approximation,
metastability and stochastic réonance, Physica D 137 (2000), 333-352.
[40]
BIBLIOGRAPHIE 97
Richard Haberman, Slowly varying jump and transition phenomena
associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37 (1979),
no. 1, 69-106.
[41] E. F. Mishchenko and N. Kh. Rozov, Differential
equations with small parameters and relaxation oscillations, Plenum Press, New
York, 1980.
[42] Peter Jung, George Gray, Rajarshi Roy, and Paul Mandel,
Scaling law for dynamical hysteresis, Phys. Rev. Letters 65 (1990),
1873-1876.
[43] Nils Berglund and Hervre Kunz, Memory efects and scaling
laws in slowly driven sys- tems, J. Phys. A 32 (1999), no. 1, 15-39.
[44] R. Benzi, A. Sutera, A. Vulpiani. The mechanism of
stochastic réonance. Journal of Physics A, 14 :L453-L458, 1981.
[45] S. M. Bezrukov, I. Vodyanov. Stochastic réonance
in non-dynamical systems without response thresholds. Nature, 385 :319-321,
1997.
[46] A. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, L. Kiss.
Stochastic résonance in a single neuron model : Theory and analog
simulation. Journal of Theoretical Biology, 152 :531-555, 1991
[47] A. R. Bulsara, L Gammaitoni. Tuning in to noise. Physics
Today, 49 :39-45, March 1996
[48] A. R. Bulsara, S. B. Lowen, C. D. Rees. Cooperative
behavior in the periodically modulated Wiener process: Noise-induced complexity
in a model neuron. Physical Review E, 49 :4989-5000, 1994.
[49] J. M. Casado, J. J. Mejias, M. Morillo. Comments on
Stochastic réonance in a periodic potential system under a constant
driving force". Physics Letters A, 197 :365-366, 1995.
[50] L. Gammaitoni. Stochastic réonance and the
ditheringeect in threshold physical systems. Physical Review E, 52 :4691-4698,
1995.
[51] Z. Gingl, L. B. Kiss, F. Moss. Non-dynamical stochastic
resonance: Theory and experiments with white and arbitrarily coloured noise.
Europhysics Letters, 29 :191196, 1995.
[52] M. Gitterman, I. B. Khaln, B. Y. Shapiro. On the onset
of stochastic resonance. Physics Letters A, 184 :339-340, 1994.
[53]
BIBLIOGRAPHIE 98
M. Gitterman, G. H. Weiss. Escape of a periodically driven
particules from a metastable state in a noisy system. Journal of Statistical
Physcis, 70 :107-123, 1993.
[54] P. Jung. Stochastic resonance and optimal design of
threshold detectors. Physics Letters A, 207 :93-104, 1995.
[55] A. Longtin, A. R. Bulsara, F. Moss. Time-interval
sequences in bistable systems and the noise-induced transmission of information
by sensory neurons. Physical Review Letters, 67 :656-659, 1991.
[56] B. McNamara, K. Wiesenfeld. Theory of stochastic
resonance. Physical Review A, 39 :4854-4869, 1989.
[57] F. Moss, J. K. Douglass, L. Wilkens, D. Pierson, E.
Pantazelou. Stochastic resonance in an electronic Fitzhugh-Nagumo model. Annals
of New York Academy of Sciences, 706 :2641, 1993.
[58] F. Moss, D. Pierson, D. O'Gorman. Stochastic resonance:
Tutorial and update. International Journal of Bifurcation and Chaos, 4
:1383-1398, 1994.
[59] Z. Neda. Stochastic resonance in 3D Ising ferromagnets.
Physics Letters A, 210 :125- 128, 1996.
[60] C. Nicolis. Stochastic aspects of climatic transitions
response to periodic forcing. Tellus, 9 :34 1982. 112 References
[61] H. Risken. The Fokker-Planck Equation. Springer, Berlin,
1985.
[62] G. Sampath, S. K. Srinivasan. Stochastic Models for
Spike Trains of Single Neurons. Spinger, Berlin, 1977.
[63] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty,
F. Moss. Visual perception of stochastic resonance. Physical Review Letters, 78
:1186-1189, 1997.
[64] M. Spano, M. Wun-Fogle, W. L. Ditto. Experimental
observation of stochastic resonance in a magnetoelastic ribbon. Physical Review
A, 46 :5253-5256, 1992.
[65] N. G. Stocks, N. D. Stein, P. V. E. McClintock.
Stochastic resonance in mono-stable systems. Journal of Physics A, 26
:L385-L390, 1993.
[66] N. G. Stocks, N. D. Stein, S. M. Soskin, P. V. E.
McClintock. Zero-dispersion stochastic resonance. Journal of Physics A, 25
:L1119-L1124, 1992.
[67]
BIBLIOGRAPHIE 99
R. FitzHugh, Impulses and physiological states in models of
nerve membrane, Biophys. J. 1 (1961), 445466.
[68] J. S. Nagumo, S. Arimoto, and S. Yoshizawa, An active
pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), 20612070
[69] ] Bernt Oksendal, Stochastic differential equation, An
introduction with application, fourth edition, Universitext, Springer-Verlag,
Berlin, 1995.
[70] T. Kostova, , R. Ravindran and M. Schonbek,
FitzHugh-Nagumo Revisited, International J. Bifurcation and Chaos 14 (3)
(2004), 913-925.
|