WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Phénomènes induits par le bruit dans les systèmes dynamiques décrits par des équations différentielles.

( Télécharger le fichier original )
par Bouanani Oussama
saida - Master 2015
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion

Dans ce mémoire, nous avons étudié les systèmes lent-rapides déterministes puis stochastique et on a introduit un exemple typique de ces système sont les résonances, nous avons donné des exemples pratiques avec simulation.

Ce mémoire est consacré à l'étude des systèmes de FitzHugh-Nagumo stochastiques qui ont été introduits pour modéliser la transmission de l'influx nerveux dans un neurone. Nous avons commencé par rappeler des résultats sur le système déterministe associé afin de trouver les valeurs des paramètres intéressants pour notre étude. Celles-ci correspondent aux cas où le système admet au moins un point d'équilibre stable et où le système est excitable.

Comme perspectives, on s'intéresse à l'étude du comportement de solutions des systèmes lent-rapides plus compliqués dans lesquels les coefficients du système de FitzHugh-Nagumo (a, b, c) sont aléatoires, et dans ce cas, on introduit d'autres approches probabilistes pour étudier ce système et voir le comportement asymptotique puis la stabilité et la stabilisation.

Bibliographie

[1] .Damien .LANDON. Perturbation et excitabilité dans des modèles stochastiques de transmission de linflux nerveux

[2] . B. van der Pol. A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701-710 (1920).

[3] . J. Z. Su, J. Rubin, D. Terman. Effects of noise on elliptic bursters. Nonlinearity 17, 133-157 (2004).

[4] . P. Hitczenko, G. S. Medvedev. Bursting oscillations induced by small noise. SIAM J. Appl. Math. 69, 1359-1392 (2009)

[5] . R. Benzi, A. Sutera, A. Vulpiani. Stochastic réonance in the thermohaline circulation. J. Phys. A 11, 453-457 (1981).

[6] . B. McNamara, K. Wiesenfeld. Theory of stochastic réonance. Phys. Rev. A 39, 4854-4869 (1989).

[7] . M. I. Freidlin, A. D. Wentzell. Random Perturbations of Dynamical Systems. Springer-Verlag, New York (1998).

[8] . N. Berglund, B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity 15, 605-632 (2002).

[9] . N. Berglund, B. Gentz, C. Kuehn. Hunting French ducks in a noisy environment. Journal of Differential Equations 252, 4786-4841 (2012).

[10] . W. Wang, A. J. Roberts. Average and deviation for slow-fast stochastic partial differential equations. Journal of Differential Equations 253, 1256-1286 (2012).

[11] A. N. Tihonov, Systems of différential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952), 575-586.

[12]

BIBLIOGRAPHIE 95

Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53-98.

[13] Nils Berglund and Barbara Gentz, Beyond the FokkerPlanck equation : Pathwise control of noisy bistable systems, J. Phys. A 35 (2002), no. 9, 2057-2091.

[14] The effect of additive noise on dynamical hysteresis, Nonlinearity 15 (2002), no. 3, 605-632.

[15] Metastability in simple climate models : Pathwise analysis of slowly driven Langevin equations, Stoch. Dyn. 2 (2002), 327-356.

[16] Pathwise description of dynamic pitchfork bifurcations with additive noise, Pro-bab. Theory Related Fields 122 (2002), no. 3, 341-388.

[17] A sample-paths approach to noise-induced synchronization: Stochastic réonance in a double-well potential, Ann. Appl. Probab. 12 (2002), 1419-1470.

[18] Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003), 1-54.

[19] On the noise-induced passage through an unstable periodic orbit I : Two-level model, J. Statist. Phys. 114 (2004), 1577-1618.

[20] On the noise-induced passage through an unstable periodic orbit II : The general case, In preparation, 2005.

[21] Y. Shimazu, K. Sugiyama, T. Kojima, and E. Tomida, Some problems in ecology oriented environmentology. II. Terrestrial environmentology, 1. Earth Sci. Nagoya Uniu. 20 :31-89 (1972).

[22] M. E. Gilpin, Enriched predator-prey systems : Theoretical stability, Science 177902994 (1972).

[23] H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM 1. Appl. Math. 42 :27-43 (1982).

[24] Richard Bellman, Introduction to matrix analysis, McGrawHill, New York, 1960.

[25] L. S. Pontryagin and L. V. Rodygin. Approximate solution of a system of ordinary differential equations involving a small parameter in the derivatives. Soviet Math. Dokl., 1 :237240, 1960.

[26]

BIBLIOGRAPHIE 96

Roberto Benzi, Giorgio Parisi, Alfonso Sutera, and Angelo Vulpiani, A theory of stochastic réonance in climatic change, SIAM J. Appl. Math. 43 (1983), no. 3, 565-578.

[27] Luca Gammaitoni, Peter Hanggi, Peter Jung, and Fabio Marchesoni, Stochastic réonance, Rev. Mod. Phys. 70 (1998), 223-287.

[28] Frank Moss and Kurt Wiesenfeld, The benefits of background noise, Scientific American 273 (1995), 50-53.

[29] Kurt Wiesenfeld and Frank Moss, Stochastic réonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature 373 (1995), 33-36.

[30] Roberto Benzi, Alfonso Sutera, and Angelo Vulpiani, The mechanism of stochastic réonance, J. Phys. A 14 (1981), no. 11, L453-L457.

[31] Richard Bellman, Introduction to matrix analysis, McGrawHill, New York, 1960.

[32] Martin V. Day, On the exponential exit law in the small parameter exit problem, Stochastics 8 (1983), 297-323.

[33] P. Imkeller and I. Pavlyukevich, Model reduction and stochastic réonance, Stoch. Dyn. 2 (2002), no. 4, 463-506.

[34] J.-P. Eckmann and L. E. Thomas, Remarks on stochastic réonance, J. Phys. A 15 (1982), L261-L266.

[35] Bruce McNamara and Kurt Wiesenfeld, Theory of stochastic réonance, Phys. Rev. A 39 (1989), 4854-4869.

[36] Samuel Herrmann and Peter Imkeller, Barrier crossings characterize stochastic réonance, Stoch. Dyn. 2 (2002), no. 3, 413-436, Special issue on stochastic climate models.

[37] Ronald F. Fox, Stochastic réonance in a double well, Phys. Rev. A 39 (1989), 4148-4153.

[38] Peter Jung and Peter Hänggi, Stochastic nonlinear dynamics modulated by external periodic forces, Europhys. Letters 8 (1989), 505-510.

[39] Mark I. Freidlin, Quasi-deterministic approximation, metastability and stochastic réonance, Physica D 137 (2000), 333-352.

[40]

BIBLIOGRAPHIE 97

Richard Haberman, Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37 (1979), no. 1, 69-106.

[41] E. F. Mishchenko and N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Plenum Press, New York, 1980.

[42] Peter Jung, George Gray, Rajarshi Roy, and Paul Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Letters 65 (1990), 1873-1876.

[43] Nils Berglund and Hervre Kunz, Memory efects and scaling laws in slowly driven sys- tems, J. Phys. A 32 (1999), no. 1, 15-39.

[44] R. Benzi, A. Sutera, A. Vulpiani. The mechanism of stochastic réonance. Journal of Physics A, 14 :L453-L458, 1981.

[45] S. M. Bezrukov, I. Vodyanov. Stochastic réonance in non-dynamical systems without response thresholds. Nature, 385 :319-321, 1997.

[46] A. Bulsara, E. W. Jacobs, T. Zhou, F. Moss, L. Kiss. Stochastic résonance in a single neuron model : Theory and analog simulation. Journal of Theoretical Biology, 152 :531-555, 1991

[47] A. R. Bulsara, L Gammaitoni. Tuning in to noise. Physics Today, 49 :39-45, March 1996

[48] A. R. Bulsara, S. B. Lowen, C. D. Rees. Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neuron. Physical Review E, 49 :4989-5000, 1994.

[49] J. M. Casado, J. J. Mejias, M. Morillo. Comments on Stochastic réonance in a periodic potential system under a constant driving force". Physics Letters A, 197 :365-366, 1995.

[50] L. Gammaitoni. Stochastic réonance and the ditheringeect in threshold physical systems. Physical Review E, 52 :4691-4698, 1995.

[51] Z. Gingl, L. B. Kiss, F. Moss. Non-dynamical stochastic resonance: Theory and experiments with white and arbitrarily coloured noise. Europhysics Letters, 29 :191196, 1995.

[52] M. Gitterman, I. B. Khaln, B. Y. Shapiro. On the onset of stochastic resonance. Physics Letters A, 184 :339-340, 1994.

[53]

BIBLIOGRAPHIE 98

M. Gitterman, G. H. Weiss. Escape of a periodically driven particules from a metastable state in a noisy system. Journal of Statistical Physcis, 70 :107-123, 1993.

[54] P. Jung. Stochastic resonance and optimal design of threshold detectors. Physics Letters A, 207 :93-104, 1995.

[55] A. Longtin, A. R. Bulsara, F. Moss. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Physical Review Letters, 67 :656-659, 1991.

[56] B. McNamara, K. Wiesenfeld. Theory of stochastic resonance. Physical Review A, 39 :4854-4869, 1989.

[57] F. Moss, J. K. Douglass, L. Wilkens, D. Pierson, E. Pantazelou. Stochastic resonance in an electronic Fitzhugh-Nagumo model. Annals of New York Academy of Sciences, 706 :2641, 1993.

[58] F. Moss, D. Pierson, D. O'Gorman. Stochastic resonance: Tutorial and update. International Journal of Bifurcation and Chaos, 4 :1383-1398, 1994.

[59] Z. Neda. Stochastic resonance in 3D Ising ferromagnets. Physics Letters A, 210 :125- 128, 1996.

[60] C. Nicolis. Stochastic aspects of climatic transitions response to periodic forcing. Tellus, 9 :34 1982. 112 References

[61] H. Risken. The Fokker-Planck Equation. Springer, Berlin, 1985.

[62] G. Sampath, S. K. Srinivasan. Stochastic Models for Spike Trains of Single Neurons. Spinger, Berlin, 1977.

[63] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, F. Moss. Visual perception of stochastic resonance. Physical Review Letters, 78 :1186-1189, 1997.

[64] M. Spano, M. Wun-Fogle, W. L. Ditto. Experimental observation of stochastic resonance in a magnetoelastic ribbon. Physical Review A, 46 :5253-5256, 1992.

[65] N. G. Stocks, N. D. Stein, P. V. E. McClintock. Stochastic resonance in mono-stable systems. Journal of Physics A, 26 :L385-L390, 1993.

[66] N. G. Stocks, N. D. Stein, S. M. Soskin, P. V. E. McClintock. Zero-dispersion stochastic resonance. Journal of Physics A, 25 :L1119-L1124, 1992.

[67]

BIBLIOGRAPHIE 99

R. FitzHugh, Impulses and physiological states in models of nerve membrane, Biophys. J. 1 (1961), 445466.

[68] J. S. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), 20612070

[69] ] Bernt Oksendal, Stochastic differential equation, An introduction with application, fourth edition, Universitext, Springer-Verlag, Berlin, 1995.

[70] T. Kostova, , R. Ravindran and M. Schonbek, FitzHugh-Nagumo Revisited, International J. Bifurcation and Chaos 14 (3) (2004), 913-925.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle