Bibliographie
[1] B. FARID : Analyse du comportement des structures
sous influence du feu. Thèse de doctorat, Université
Mentouri Constantine, 2010.
[2] J. Roy : Le feu et ses composantes. Art1.
[3] Bjorn. Enclosure Fire Dynamics. CRC Press,
2000.
[4] S. DESANGHERE : Détermination des conditions
d'échauffement de structure extérieure à un bâtiment
en situation d'incendie. Thèse de doctorat, Institut national des
sciences appliquées de Rouen, 2006.
[5] R. M. MoUANGUE : Contribution à la
modélisation de la combustion turbulente
non-pré-mélangée avec prise en compte de l'auto-allumage.
Thèse de doctorat, Université de Yaoundé I, 2011.
[6] RIAD B. : Etude Spectrométrique du Rayonnement
Infrarouge des Suies dans les Flammes de Diffusion Laminaires.
Thèse de doctorat, Institut National des Sciences Appliquées
de Lyon, 2002.
[7] Norbert P. : Turbulent Combustion. Cambridge
University Press, 2004.
[8] J. CHoRIER : Diagnostic et évaluation des
risques incendie d'une construction et de sa mise en sécurité.
Thèse de doctorat, Université de Savoie, 2007.
[9] A. CoPPALLE : Le feu, cet obscur et lumineux objet de
recherche. In 21ème Congrès Français de
Mécaniqueb Bordeaux - 26 au 30 août 2013.
[10] J. G. Quintiere, Fundamentals of Fire Phenomena.
John Wiley et Sons, Ltd IBN,0-470-09113-4, 2006.
[11] JoRGEN C. : Fire modelling using C.F.D - an introduction
for fire safety engineers. Rapport technique, Lund Institute of Technology,
1999.
[12]
BIBLIOGRAPHIE 80
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
BIBLIOGRAPHIE 81
SISKA H. D. : Etude fondamentale du comportement au feu de
composites silicones : stabilité thermique, résidus sous pyrolyse
et tests calorimétriques. Thèse de doctorat,
Université Montpellier 2, 2011.
[13] L. THOMAS, Guy A. : Sécurité incendie.
In Mémentos acier, 2005.
[14] A. COPPALLE : Feux de compartiments. Rapport technique,
CNRS - Université de Rouen, 2010.
[15] FRANCO DISCHI : Rivelazioni incendio. Rivista di
Criminologia, Vittimologia e Sicurezza Anno 2 N.1, 2008.
[16] FRANCESCO T. : A numerical model for the prediction of
radiation controlled turbulent wall fires. Symposium (International) on
Combustion- Volume 17 issue 1, 1979.
[17] DAMIEN H. : Etude de la combustion des
matériaux solides, application à la sécurité
incendie. Thèse de doctorat, INSA de Rouen, 2012.
[18] R. Siegel, J. R. Howe : Thermal radiation heat
transfert. National Aeronautics and Space Administration, NASA164,
1971.
[19] ULF WICKSTRöN : Heat transfer by radiation and
convection in fire testing. Fire and Materials 28 :411-415, 2004.
[20] G. SAuCE: Analyse de risque incendie sur un ERP. Rapport
technique, INRS, 2009.
[21] J. DOAT, J.CH. VALETTE : Le pouvoir calorifique
supérieur d'espèces forestières
méditerranéennes. Ann. Sci. Forest, 38 (4) 469-486,
1981.
[22] C.CLuCCHESI : Etude du mouvement d'un fluide de
faible masse volumique entre deux compartiments reliés par une ouverture
de type porte : Application à la propagation de la fumée
d'incendie. Thèse de doctorat, Méditerranée-Aix
Marseille II, 2009.
[23] M.O. ANNARuMMA, J.M. MOST, P. JOuLAIN : On the numerical
modeling of buoyancy-dominated turbulent vertical diffusion flames.
Combustion and Flame 85 :403415, 1991.
[24] DOuGAL D. : An Introduction to Fire Dynamics.
2011.
[25] Rodney O.Fox, Computational Models for Turbulent
Reacting Flows. Cambridge University Pres, 2003.
[26] R A. Libby, E A. Williams : Turbulent Reacting
Flows. Springer-Verlag Berlin Heidelberg New York, 1980.
[27]
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
E. GUILLAUME : Les outils de l'ingénierie de la
sécurité incendie. Rapport technique, Laboratoire national de
métrologie et d'essais (LNE), 2006.
[28] E.L. BIRD, M.B.E.,M.C., A.R.I.B.A., S.D. STUDD. :
Fire protection. Royal Institute of British, 1958.
[29] Combustion phenomena Selected Mechanisms of Flame
Formation, Propagation, and Extinction. Jozef J., B. Veyssiere, 2009.
[30] Microgravity Combustion Fire in Free Fall. H.
D. Ross, 2001.
[31] JUKKA V., J. FLOYD, R. MCDERMOTT : C.F.D simulations on
extinction of co-flow diffusion flames. Fire Safety Science-proceeding of
the tenth International Symposium, pp.781-794, 2001.
[32] C. S. MCENALLY, A. M. SCHAFFER, M. B. LONG, L. D.
PFEFFERLE, M. D. SMOKE, M. B. COLKET, R. J. HALL : Computational and
experimental stady of sot formation in a coflow lamiinar ethylene diffusion
flame. Twenty-Seventh Symposium (International) on Combustion/The
Combustion Institute, 1998/pp. 1497-1505, 1998.
[33] QINGAN Z. : Detailed Modeling of Soot
Formation/Oxidation in Laminar Coflow Diffusion Flames. Thèse de
doctorat, University of Toronto, 2009.
[34] VIVIEN R.L., PRAVEEN N., HOWARD R. B., A. TROUVé
: Local extinction of diffusion flames in fires. Fire Safety
Science-proceedings of the tenth international symposium,pp.583-696,
2011.
[35] JESPER A., PETRA A., ANDERS L., PATRICK V. H., I.
WETTERLUND : Uncertainties in measuring heat and smoke release rates in the
room/corner test and the SBI. Fire Technology, ISSN 0284-5172,
2001.
[36] MAN Y., BING C., C. LI, JIAQING Z. , S. LU : Analysis of
the combustion efficiencies and heat release rates of pool fires in ceiling
vented compartments. Procedia Engineering 62 275-282, 2013.
[37] CLAYTON HUGGETT : Estimation of rate of heat release by
means of oxygen consumption measurements. Fire and Materials Vol 4, No 2,
p.61-64., 1980.
[38] MARC L. JANSSENS : Measuring rate of heat release by
oxygen consumption. Fire Technology, AUGUST 1991.
[39]
BIBLIOGRAPHIE 82
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
BIBLIOGRAPHIE 83
PATRICK A.E., C.M. FLEIsCHMANN : Uncertainty of heat release
rate calculation of the is0 56604 cone calorimeter standard test method.
Fire Technology, vol 35, No 2, 1999.
[40] S. BRoHEZ : Uncertainty analysis of heat release rate
measurement from oxygen consumption calorimetry. Fire Materials. 29 :383
-394, 2005.
[41] SUNG CHAN KIM: A numerical study on the estimation of
heat release rate based on the flow field through the doorway. Fire Safety
Science-Proceeding of the tenth International Symposiom, pp. 1525-1534,
2011.
[42] J. B. Moss, C. D. STEWART : Flamelet based
smoke properties for the field modelling of fires. Fire Safety Journal 30
229-250, 1998.
[43] K. B LEE, THRING M.W, BEéR J.M : On the rate of
combustion of soot in a laminar soot flames. Combustion and Flame 47,
269-279, 1962.
[44] R.B EDELMAN, BAHADoRI M.Y. : Effects of buoyancy on
gas-jets diffusions flames: Eperimental and theory. Twenty-Second Symposium
(International) on Combustion/The Combustion Institute pp. 413-423,
1986.
[45] D.B OLsoN, PICKENs J.C., GILL R.J : The effects of
molecular structure on soot formation ii. diffusion flames. Combustion and
Flame Vol.62, 43-60, 1985.
[46] Moss J.B , STEWART C.D, SYED K.J. : Flowfield modelling
of soot formation at elevated pressure. Acta Astronautica Vol. 13, No.
11/12, pp. 681-688, 1988.
[47] K.J. SYED, C.D. STEWART , J. B. Moss : Modeling soot
formation and thermal radiation in buoyant turbulent diffusion flame.
Twenty-Third Symposium (International) on Combustion/The Combustion
Institute, pp. 1533-1541, 1990.
[48] VEDAT S. ARPACI, AHMET S.: Buoyancy-driven
turbulent diffusion flames. Combustion and Flame 86 :203-215, 1991.
[49] P. J. CoELHo, M. G. CARVALHo : Modeling of soot
formation and oxidation in turbulent diffusion flames. Journal of
thermophysics and heat transfer; Vol. 9, No. 4,, 1995.
[50] J. B. Moss, C. D. STEWART, K. J. YoUNG: Modeling soot
formation and burnout in a high temperature laminar diffusion flame burning
under oxygen enriched conditions. Combustion and Flame, 1995.
[51]
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
KENNEDY IAN M : Models of soot formation and oxydation.
Prog. Energy Combust. Sci. Vol.23, pp. 95-132, 1997.
[52] P. Di MARTiNo, G. CiNQUE : Soot formation modelling in
turbulent diffusion flames. RTO MP - 14., 1998.
[53] D. MoRVAN, B. PoRTERiE, J.C LoRAUD : Numerical
simulation of a buoyant metha-ne/air diffusion flame. Fire Safety
Science-Proceeding of the sixth International Sympo-siom, pp 277-288,
1998.
[54] SMooKE M.D, McENALLY C.S, PFEFFERLE L.D, HALL
R.J, CoLKET M.B. : Computational and experimental stady of sot formation in a
coflow laminar diffusion flame. Combustion and flame. 117 : 117-139,
1999.
[55] MELiSSA K.C., ARViND A. : Transient measurements of
temperature and radiation intensity in spherical microgravity diffusion flames.
American Institute of Aeronautics and Astronautics(AIAA) -746,
2006.
[56] BiJAN K. M., A.DATTA, A.SARKAR : A computational study
of the soot formation in methane-air diffusion flame during early transience
following ignition. Engineering Letters, 16 :3, EL-163-04, 2008.
[57] M.R.J. CHAREST, HYUN I. Joo, OMER L. GULDER,
CLiNToN P.T. GRoTH : Experimental and numerical study of soot
formation in laminar ethylene diffusion flames at elevated pressures from 10 to
35 atm. Proceedings of the Combustion Institute 33 549-557, 2011.
[58] ARUP J. B. : Soot formation in diffusion flame under
microgravity conditions. Proceedings of the International Conference on
Mechanical Engineering, Dhaka, Bangladesh, 2011.
[59] H.Y. WANG : Soot formation and carbon monoxide
production in buoyancy-driven parallel vertical wall fire - acomputer study.
International Journal on Engineering Performance-Based Fire Codes, Volume
11, Number 2, p.27-42, 2012.
[60] AHMET E. K., O.L. GULDER : Soot formation in high
pressure laminar diffusion flames. Progress in Energy and Combustion
Science 38 818-845, 2012.
[61] B.J. McCoFFREY : Purely buoyant diffusion flames: Some
experimental results. Rapport technique, NBSIR 79-1910, 1979.
[62]
BIBLIOGRAPHIE 84
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
K.D. STECKLER, J.G. QuiNTiERE, W.J. RiNKiNEN : flow induced by
fire in compartment. NBSIR 82-2520., 1982.
[63] A.NouRi-BoRuJERDi, A. FATHi-GiSHNEGANi : Numerical
simulation of buoyancy affected turbulent air flow in a room. Proceedings
of ESDA, 2006.
[64] ALviN Si-XiAN L., A. CoppALLE, P. ANé : Flame
extinction in a ventilation-controlled compartment. Procedia Engineering 62
301-308, 2013.
[65] T. AHAMAD, G. M. FAETH : Turbulents walls fires.
Symposium (International) on Combustion- Volume 17 issue 1, 1979.
[66] H. Y. WANG, P. JouLAiN : On the numerical
modeling of buoyancy-dominated turbulent fires by using large eddy simulation.
Fire Safety Science-Proceeding of the Eight International Symposiom, pp.
975-986, 2005.
[67] NiNG R., Yi WANG, A. TRouvé : large eddy
simulation of vertical turbulent wall fires. International Association for
Fire Safety Science. Published by Elsevier Inc, Procedia Engineering 62 443-
452, 2013.
[68] T. BASAK, S. Roy, S.K. SiNGH, I. Pop:
Analysis of mixed convection in a lid-driven porous square cavity with
linearly heated side wall. International Journal of Heat and Mass Transfer
53 1819-1840, 2010.
[69] M.A. MANSouR, R.A. MoHAMED, M.M. ABD-ELAZiZ, S.E. AHMED
: Numerical simulation of mixed convection flows in a square lid-driven cavity
partially heated from below using nano fluid. International Communications
in Heat and Mass Transfer 37 1504-1512, 2010.
[70] T.G. MA, J.G. QuiNTiERE : Numerical simulation of
axi-symmetric fire plumes : accuracy and limitations. Fire Safety Journal
38 467-49, 2003.
[71] WiLLiAM E. M., A. JoHNSoN, K.B. MCGRATTAN, H.D R. BAuM :
Large eddy simulations of buoyants plumes. Proceedings : in Combustion
Institute/Eastern Fall 187-190 October 16-18, 1995.
[72] J. Liu , G. LiAo : Experimental study of the effect of
water mist on ch4/air non-premixed flames. Procedia Engineering 26
1279-1286, 2011.
[73] JuN Q., W.K. CHoW : Experimental data on water mist
suppression. International Association for Fire Safety Science. Published
by Elsevier Inc, Procedia Engineering 62 868-877, 2013.
[74]
BIBLIOGRAPHIE 85
Rédigé par: MBAINGUEBEM Arnaud
Mémoire de fin d'études
J. W. WiLLiAMsO : Meassurements and analysis of extinction
in vitiated flame sheets. Thèse de doctorat, University of
Maryland, 2009.
[75] HAO Y., M. Yu, L. ZHENG, A. AN : Study on suppression of
the coal dust/methane/air mixture explosion in experimental tube by water mist.
Procedia Engineering 26 803 - 810, 2011.
[76] V. DREAN, A. COPPALLE : Modélisation d'une flamme
de diffusion. EFECTIS France, 2011.
[77] ZHiBiN C., J. WEN, B. XU, SiAKA D. : Large eddy
simulation of fire dynamics with the improved eddy dissipation concept.
Fire Safety Science-Proceeding of the tenth International SymposiomM, pp.
795-808, 2011.
[78] Y. WANG, P. CHATTERJEE, JOHN L. DE Ris: Large eddy
simulation of fire plumes. Proceedings of the Combustion Institute 33
2473-2480, 2011.
[79] LucA IANNANTuONi : Validation and assessment of a
C.F.D methodology for Fire Safety Engineering applications.
Thèse de doctorat, Politecnico di Milano, March 2012.
[80] G.MARAGKOs, P. RAuWOENs, B. MERci: Application of F.D.S
and fireFOAM
in large eddy simulation of a turbulent buoyant helium plume.
Chia la- guna,Cagliari,Sardinia, 2011.
[81] D. BLAY, S. MERGui, C. NicuLAE : Confined turbulent
mixed convection in the presence of a horizontal buoyant wall jet,
Transaction of the ASME 213, 1992.
[82] OpenFOAM : Programmer's Guide, Version 2.2.2,
September 2013.
[83] E. GONcALVès : Méthodes, analyses et
calcul numériques. Institut Polytechnique de Grenoble-septembre 2005.
[84] Ksnneth K. Kuo, Fundementals and miltiphase
combustion. John Willey et Sons, 2012.
[85] H. MiLOuA, A. Azzi , H.Y. WANG: Evaluation of different
numerical approaches for a ventilated tunnel fire. Journal of Fire Sciences
29(5) 403-429, 2011.
[86] Y. XiN, J.P. GORE, K.B. McGRATTAN, R.G. REHM , H.R. BAuM
: Fire dynamics simulation of a turbulent buoyant flame using a mixture
fraction based combustion model. Combustion and Flame 141, 329-335,
2005.
|