[1] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J.
38 (1996) 367-381.
[2] Guifen Zhuang, and Jianlong Che, and Dragana S.
Cvetkovic-Ilic, and Yimin Wei. Additive Property of Drazin Invertibility of
Elements in a Ring.
[3] M. Z. Nashed, Generalized Inverses and Applications,
Academic Press, New York, 1976.
[4] J. J. Koliha, Isolated spectral points, Proc. Amer. Math.
Soc. 124 (1996) 3417-3424.
[5] J.Ph.Labrouse.Inverses Generalises d'operateurs non
Bornes
[6] Enrico Boasso. On the Moore-Penrose Inverse in
C*-algebras.Vol. 21, Num. 2, 93 106 (2006)
[7] J. J. Koliha,Some convergence theorems in Banach algebras,
Pacific J. Math. 52 (1974),467-473.
[8] Harte, R., Mbekhta, M., On generalized inverses in
C*-algebras, Studia Math., 103 (1992), 71 77.
[9] Harte, R., Mbekhta, M., On generalized inverses in
C*-algebras II, Studia Math., 106 (1993), 129 138.
[10] Mbekhta, M., Conorme et inverse generalise dans les
C*-algebres, Canadian Math. Bull., 35 (4) (1992), 515 -
522.
[11] J. J. Koliha and V. Rakocevic, Continuity of the Drazin
inverse II , Studia Math.,
[12] V. Rako cevic, Moore-Penrose inverse in Banach algebras,
Proc. Royal Irish Acad. 88A (1988), 57-60.
[13] J.J.Koliha and T.D.Than.Closed semsitable operators and the
asynchronous exponential growth of C0-semi groupe.preprint.
[14] V. Rako cevic, Continuity of the Drazin inverse, J.
Operator Theory,
[15] J.J. Koliha and P. Patricio, Elements of rings with equal
spectral idem- potents, J. Aust. Math. Soc. 72 (2002) 137-152.
[16] A. E. Taylor and D. C. Lay, Introduction to Functional
Analysis, 2nd edition, Wiley, New York, 1980.
[17] A. Ben-Israel and T. N. E. Greville, Generalized Inverses :
Theory and Applications, Wiley-Interscience, New York, 1974.
[18] M. P. Drazin, Pseudo-inverse in associative rings and
semigroups
[19] R. E. Harte, Spectral projections, Irish Math. Soc.
Newsletter., 11 (1984), 10 - 15.
[20] R. E. Harte, On quasinilpotents in rings, PanAm. Math. J. 1
(1991), 10 - 16.
[21] M. Z. Nashed and Y. Zhao, The Drazin inverse for singular
evolution equations and partial differential equations, World Sci. Ser. Appl.
Anal. 1 (1992), 441- 456
[22] A. E. Taylor and D. C. Lay, Introduction to Functional
Analysis, 2nd edition, Wiley, New York, 1980.
[23] J. J. Koliha THE DRAZIN AND MOORE-PENROSE INVERSE IN
C*-ALGEBRAS
[24] Boulmaarouf, Z., Fernandez Miranda, M., Labrousse, J.-Ph.
1997 An algorithmic approach to orthogonal projections and Moore-Penrose
inverses, Numer. Funct. Anal. Optim. 18, 55-63.
[25] Groetsch, C. W. 1975 Representation of the generalized
inverse, J. Math. Anal. Appl. 49, 154-157.
[26] Showalter, D. 1967 Representation and computation of the
pseudoinverse, Proc. Amer. Math. Soc. 18, 584-586.
[27] J. J. Koliha and Trung Dinh Tran. The Drazin inverse for
closed linear operators
[28] S. L. Campbell and C. D. Meyer, Generalized Inverses of
Linear Transformations, Pitman, London, 1979
[29] S. R. Caradus, Operator Theory of Generalized Inverse,
Queen's Papers in Pure and Appl. Math. 38, Queen's University, Kingston,
Ontario, 1974.
[30] M. Z. Nashed, Inner, outer and generalized inverses in
Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987), 261-325.
[31] YIHUA LIAO and JIANLONG CHEN and and JIAN CUI Cline's
formula for the generalized Drazin inverse.
[32] Hïam Brezis. Analyse Fonctionnelle. Théorie et
Applications.