WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contrainte Psycho-Physiques et Electrophysiologiques sur le codage de la stimulation électrique chez les sujets porteurs d'un implant cochléaire

( Télécharger le fichier original )
par Stéphane GALLEGO
Université Lyon I - Doctorat 1999
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Article 13 :

IPSILATERAL ABR WITH COCHLEAR IMPLANT

S. Gallégo, C. Micheyl, C. Berger-Vachon, E. Truy, A. Morgon, L. Collet

Acta Otolaryngol (Stockh)

1996, 116, 228-233

L'objectif de cette pré-étude était de mettre au point un protocole d'enregistrement, de stimulation, de traitement et d'analyse des recueils de PEAEP.

Elle a permis de démontrer qu'il était possible d'obtenir des PEAEP de relativement bonne qualité chez plusieurs patients, à différents niveaux d'intensité, sur différentes zones de stimulation de la cochlée. Les ondes II, III et V sont très distinctes,

Elle a mis en évidence les faibles variations des latences des ondes en fonction de la zone et de l'intensité de stimulation. Cela peut s'expliquer, comparer à un PEAP par stimulation acoustique, par le shunt de la biomécanique cochléaire. Seules les amplitudes des ondes ainsi que des mesures de reproductibilité sont dépendantes de la zone et de l'intensité de stimulation.

Acta Otolaryngol (Stockh) 1996; 116: 228-233

Ipsilateral ABR with Cochlear Implant

S. GALLEGO,' C. MICHEYL,' C. BERGER-VACHON,' E. TRUY,2 A. MORGON2 and L. COLLET'

From 'CNRS URA 1447, and 2Department of Otorhinolaryngology, Edouard Herriot Hospital U, Lyon, France

Gallégo S, Micheyl C, Berger-Vachon C, Truy E, Morgon A, Collet L. Ipsilateral ABR with cochlear implant. Acta Otolaryngol (Stockh) 1996; 116: 228-233.

Ipsilateral ABR recording technique was developed with the MXM DIGISONIC DX10 cochlear implant, involving, firstly, setting of recording variables with regard to implant and ABR constraints, and, secondly, enhancement of recording quality by signal processing. The resulting recording quality then enabled us to characterize ABR latency, amplitude and wave reproductibility according to stimulus intensity and stimulation site (electrode stimulated). The findings agree with those of the literature on contralateral human and ipsilateral animal studies. Waves III and V amplitude increased with stimulus intensity. Waves III and V latency was insensitive to stimulus intensity or site. ABR quality diminished basally. Key words: ABR, cochlear implant, electrical stimulation, human, ipsilateral, wave characteristics.

ABR recording

The electrical stimulus used to evoke ABRs was generated using an MXMe DIGISTIM system connected to a PC computer via a serial port. ABR recording was performed using a NICOLET® PATHFINDER II. This system requires the fitting of 3 electrodes (one reference electrode, one anode and one cathode). The PATHFINDER was triggered externally by the DIGISTIM.

The following recording variables were determined after many preliminary trials, using a cochlear implant model and also taking into account electrophysiological constraints: 3 averagings of 256 sweeps; 100 /AT sensitivity; analog bandpass filtering from 0.28,000 Hz; 10 ms analysis time, 512 point window; 50 kHz sampling frequency.

ABR processing

After recording, ABR signals were processed using different processing stages. First of all, the first 400 fis of the ABR signal were excluded so as to eliminate stimulus artefact. Then, the signal was filtered with a digital bandpass of 300-3,000 Hz.

The 3 x 3 intercorrelation matrix was then computed in order to eliminate the most exceptional curves. Finally, the remaining curves were summed and, using an algorithm based on the detection of peaks and infiection points in the signal (5), wave amplitude and latencies were determined. Wave amplitudes were determined on the basis of the length of the wave duration (6).

RESULTS

Characterization of ABRs as a function of stimulation intensity

Fig. 1 shows typical ABR traces recorded from one
electrode in one patient (SC). The traces were

INTRODUCTION

The recording of ABRs is far more difficult to perform in cochlear implant patients than in non-implanted persons. The amplitude of the electrical stimulation, which is about 10,000,000 times greater than that of the ABR signal, causes saturation of the amplifier. One means of reducing the stimulation artefact consists of contralateral recording: ABRs are recorded in the opposite ear (1). However, another solution could reside in the determination of optimum stimulation variables, which would allow considerable reduction in stimulus amplitude, duration, and leakage across the scalp.

The first aim of the present study was to establish the feasibility of ipsilateral ABR recording; then, once the technique was ready, to elaborate a signal processing technique allowing good-quality ABRs; and finally, to characterize ABRs as a function of 2 variable-stimulation intensity (2) and electrode position (tonotopy) (3).

MATERIAL AND METHODS

Subjects

Three patients implanted with an MXIVI' DIGISONIC DX10 participated in the study. This cochlear implant is a non-conventional auditory prosthesis composed of 15 electrodes (4), the function of which is to replace the peripheral part of the auditory system. These electrodes stimulate the ganglion of Corti and elicit auditory sensations.

X-ray photographe revealed that electrode positioning was roughly the same across patients. Thus, it could be considered that stimulation of a given electrode excited roughly the same frequency region from one patient to another.

General patient characteristics are given in Table I.

(c) 1996 Scandinavian University Press. ISSN 0001-6489

Table I. Patient characteristics

`Performance' is percentage recognition on a Lafon word-list (17 words of 3 phonemes each) by lip-reading plus cochlear implant

 

Deafness

Implantation

 

Performance

Patient

etiology

duration

Age

(LR + CI)

BO

Accidentai

6 months

64 years

76%

LE

Evolutionary

3 months

60 years

88%

SC

Accidentai

12 months

44 years

82%

recorded at 16 different stimulation levels linearly decreasing from a maximum (80 in arbitrary units determined by the equipment i.e. 0.104 p C/cycle) to 0. The maximum was set just below discomfort level.

Fig. 2 shows the latency and amplitude of waves III and V as a function of stimulation intensity. In each patient, ABRs were recorded for 6 to 9 different electrodes. Because of the large amount of data-- about 50 matrices, as shown in Fig. 2 --findings were clustered by patient. The relationships between stimulation intensity and main ABR characteristics (latency, amplitude and reproducibility) were studied using linear regression. The results of regression analyses (mean, slope, correlation coefficient and signifiance level) are shown in Table II.

In order to compare ABR characteristics between patients, data were then normalized and a regression analysis was performed, the results of which are represented by the scatter plots in Fig. 4a and also given in Table II.

Characterization of ABRs as a function of electrode position (tonotopy)

Fig. 3 shows typical ABR traces obtained from 9 electrodes in one patient (SC). The electrodes were numbered 1-15, basally to apically. Each curve was obtained by averaging about 8,000 traces. Relationships between electrode number and ABR characteristics were studied by means of regression analyses performed on the data clustered by electrode number. As in the previous section, data were then normalized and averaged across patients and regression variables were computed. The obtained relationships are shown in Fig. 4b and the corresponding variables are given in Table II.

DISCUSSION

The results obtained in this study demonstrate the
possibility of recording ipsilateral ABRs on a coch-
lear implant (MXM DX10). The good quality of the

? ? 1 t I 1 1 t I I ? 1 `,"!?


·

14

15

16

Fig. 1. Ipsilateral ABRs from electrode 14 in patient SC for 16 decreasing intensity levels. (The arrow on curve 10 shows patient's subjective threshold).

Table II. ABR variable data according to stimulus intensity and electrode number (position), per patient and average

Variable

Patient

Mean

S.D.

Variation according to intensity

 

Variation according to electrode number

Slope

n

R

p

Slope

n

R

p

L III (ms)

BO

1.90

0.0899

2.60E-4

68

0.059

NS

3.85E-3

68

0.184

NS

L III (ms)

LE

2.30

0.117

8.40E-4

68

0.184

NS

-8.00E-3

68

0.285

<0.02

L III (ms)

SC

1.69

0.0905

-1.62E-3

108

0.455

<0.001

7.30E-4

108

0.030

NS

L III (ms)

Total

1.96

0.0966

-4.90E-4

244

0.123

NS

-7.40E-4

244

0.030

NS

L V (ms)

BO

3.86

0.176

-1.16E-3

68

0.133

NS

-0.0231

68

0.563

<0.001

L V (ms)

LE

4.15

0.190

-1.58E-3

68

0.206

NS

-0.0130

68

0.275

<0.03

L V (ms)

SC

3.74

0.128

-9.50E-4

108

0.190

<0.05

-5.59E-3

108

0.162

NS

L V (ms)

Total

3.91

0.161

-1.12E-3

244

0.171

<0.01

-0.0133

244

0.329

<0.001

A III (pV)

BO

0.362

0.152

3.89E-3

67

0.509

<0.001

0.0150

67

0.419

<0.001

A III (pV)

LE

0.375

0.232

3.87E-3

68

0.411

<0.001

0.0165

68

0.285

<0.02

A III (pV)

SC

0.483

0.337

6.34E-3

106

0.475

<0.001

0.0437

106

0.484

<0.001

AIII (pV)

Total

0.407

0.2668

4.83E-3

241

0.440

<0.001

0.0266

241

0.394

<0.001

A V (pV)

BO

0.312

0.149

2.49E-3

66

0.334

<0.01

0.0117

66

0.341

<0.01

A V (pV)

LE

0.440

0.238

-3.70E-3

68

0.385

<0.001

0.0136

68

0.229

0.060

A V (pV)

SC

0.326

0.178

-3.38E-3

107

0.488

<0.001

0.0202

107

0.423

<0.001

AV (pV)

Total

0.359

0.189

3.14E-3

240

0.409

<0.001

0.0153

240

0.322

<0.001

COR (%)

BO

26.7

29.4

0.769

68

0.527

<0.001

0.954

68

0.139

NS

COR (%)

LE

27.6

30.0

0.802

65

0.649

<0.001

-0.521

65

0.067

NS

COR (%)

SC

30.9

28.6

0.399

109

0.360

<0.001

2.71

109

0.355

<0.001

COR (%)

Total

28.4

29.1

0.551

242

0.464

<0.001

1.28

242

0.173

0.007

1.60

1.55

20 25

2a:

.30 35 40 45 50 55

Intensity

60 65 70 75 80 135

1.95

.."-^s. 1.90

1.85

m 1.80

· 1.05

E

Q)
Q)

o

4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45

3.40

20

25 30 35 40 45 50 55 60 65 70 75 80 B5

2b: Intensity

0.8

0.7

D

0.6

0)

M 0.5

0.4

E

0 0.3

Q) 0.2

(1) 0.3

0.1

0.0

25

30 35

45 50 55 60 65

B5

B5

75 80

65 70

60

50 55

40

45

35

30

25

20

80

70 75

Intensity

2d:

1.0

0.9
D 0.8

Cl 0.7
0.6
Cs 0.5

- 0.4

0.2
0.1

0.0

20

2c:

40

Intensity

Fig. 2. Wave III and V latency [(a) and (6), respectively] and amplitude [(c) and (d, respectively] variation according to stimulus intensity in electrode 14 in patient SC (intensity in arbitrary equipment-determined units).

Acta Otolaryngol (Stockh) 116 Ipsilateral ABR with cochlear implant 231

II

V

Electrode 14

Electrode 13

Electrode 11

Electrode 10

Electrode 9 Electrode 6 Electrode 5 Electrode 4

Electrode 3

t Cns)IF

Fig. 3. Average ABR from 9 electrodes in patients SC (electrode 3 being the most basal, electrode 14 the most apical).

recordings allowed precise measurement of wave III and V amplitude and latency. Thus, these characteristics were able to be characterized as a function of stimulation intensity and electrode number.

The validity of the present results can be assessed by comparing them to those obtained using acoustic stimulation in normally-hearing patients. Although a direct comparison between wave latencies is impossible, due to the fact that the cochlear filtering stage no longer exists in cochlear implant patients, relative latencies can be compared. The differences between wave III and V latencies obtained in this study (1.95 for patient BO, 1.84 for LE and 2.05 for SC) were within the limits usually obtained using acoustical ABRs in normally-hearing subjects (1.85-2.15 ms (7)). Another correspondence between acoustic and electrical ABRs consisted in the fact that ABRs vanished at a stimulation level corresponding to the behavioral threshold.

The relationships observed in the present study between stimulation level and ABR amplitude and latency are in agreement with the data from previous studies (8, 2, 9). Wave III and V amplitudes increased with stimulation level (the correlation was highly significant).

Wave III and V latencies remained more or less constant for low to moderate intensities and then increased when the stimulation intensity reached threshold (from 0 to 80, about 60 ps for wave III and 195 for wave V). Crosscorrelation increased with stimulation intensity.

The relationships observed between electrode position and ABR amplitude and latency are also in

agreement with the data from previous studies (10,

11, 3). The more apical the site, the greater the amplitude and reproducibility of waves III and V,

and the smaller the latencies (10 ps for wave III latency, 200 ps for wave V latency).

CONCLUSION

The results of the present study are of relevance not
only to physiologists but also to audiologists regard-

ing objective assessment of auditory performances in
the cochlear implanted. These results merit further

investigation in a larger number of patients in order
to obtain a reliable database. There is here a possible

basis for an objective method of threshold setting in children (12).

ACKNOWLEDGMENTS

The authors wish to thank those people and institutions that have supported this study: the MXM company, the Hospices Civils of Lyon, the CNRS, the University of Lyon, the three patients.

REFERENCES

1. Pelizzone M, Kasper A, Montandon P. Electrically evoked responses in cochlear implant patients. Audiology 1989; 28: 230-8.

2. Abbas PJ, Brown CJ. Electrically evoked auditory brainstem response: growth of response with current level. Hear Res 1991; 51: 123-38.

3. Miller CA, Abbas PJ, Brown CJ. Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea. Hear Res 1993; 66: 130-42.

80 60 40 20

-20
-40

- 60

-80

4a:

Intensity

Fig. 4. Variation in wave III and V latency and amplitude and in ABR correlations according to stimulus intensity (a) and electrode number (position) (b).

232 S. Gallego et al.

0.8

0.6

0.4 o o °

00o m0 o o

Its

0.2
0.0

06.

-0.2 8 og c
· o
cPo o

L V (P<0.01)

20 40 60 80 100 120 140

Intensity

-0.4
-0.6
-0.8

- 1.0
0

20

40

60 80

100

120

140

0.4 0.3 0.2 0.1 0.0

- 0.1 -0.2

- 0.3 -0.4

Intensity

1.5 1.0 0.5 0.0

- 0.5

0

140

Intensity

1.5 1.0 0.5 0.0 -0.5

- 1.0 0 20 40 60 80 100 120 140

Intensity

- COR (P<0.001) °

0 o ° e° 008

0 ° 8 S'86'. oo %

co 00 e

8 o 1000 o

c, §o8

FL0°0 °

e0eg°Ir:0°
· ° 0qp

0 0 ° e ° °

o

20 40 60 80 100 120 140

Acta Otolaryngol (Stockh) 116

2 4 6 8 10 12 14 16

Electrode number

0.8 0.6 0.4 0.2 0.0

- 0.2 -0.4

- 0.6

- 0.8

-1.0

0

o

0

0

§

o

o 0

o

0

0
0

o

o

8

o

î

ff
g

o

8

0

o
o

L (NS)

0.4

0.3 -

0.2 - 0.1 - 0.0 - -0.1 - -0.2 - -0.3 - -0.4

2 4 6 8 10 12 14 16

Electrode number

1.5

A V (P<0.001)

o

o

Electrode number

2 4 6 8 10 12 14 16

1.0
0.5
0.0

-0.5

0 2

1.5 1.0 0.5 0.0

- 0.5

- 1.0

4 6

s

0

8 10 12 14 16

Electrode number

2 4 6 8 10 12 14 16

4b: Electrode number

4. Beliaeff M, Dubus P, Leveau JM, Repetto JC, Vincent P. Sound processing and stimulation coding of DIGISONIC DX10 15-channel cochlear implant. In Hochmair, ed. Advances in cochlear implant. 1994; 198 --203.

5. Boston JR. Automated interpretation of brainstem auditory evoked potentials: a prototype system. IEEE Trans Biomed Eng 1989; 36: 528-32.

6. Gallégo S, Berger-Vachon C, Potier F, Truy E, Collet

L. Automatic diagnosis of electrical BERA using the MXM DX10 cochlear implant. 3rd Paris Int. Congress on Cochlear Implant. Abstracts Book, 1995; 140.

7. Guerit JM. Les potentiels évoqués. Paris: Masson, 1993; 102-16.

8. Abbas PJ, Brown CJ. Electrically evoked auditory brainstem potentials in cochlear implant patients with multi-electrode stimulation. Hear Res 1988; 36: 15362.

9. Allum JHJ, Shallop JK, Hotz M, Pafaltz CR. Characteristics of electrically evoked auditory Brainstem re-

sponses elicited with 22-electrode intracochlear implant. Scand Audiol 1990; 19: 263-7.

10. Kasper A, Pelizzone M, Montandon P. Electrically evoked auditory brainstem responses in cochlear implant patients. ORL 1992; 54: 285-94.

11. Kasper A, Pelizzone M, Montandon P. Intracochlear potential distribution with intracochlear and extracochlear electrical stimulation in humans. Ann Otol Rhinol Laryngol 1991; 100: 812-6.

12. Shallop JK. Objective electrophys from cochlear implant. Ear Hear 1993; 14: 58-63.

Address for correspondence: S. Gallégo

Hôpital Edouard Herriot Pavillon U

URA CNRS 1447

3 Place d'Arsonval

F-69437 Lyon Cedex 03 France

Fax: +33 72 11 05 34.

g/ Le filtrage numérique adapté au PEAEP :

L'utilisation des filtrages numériques post-traitement permettent d'améliorer considérablement les PEAP lors d'une stimulation acoustique (Grônfors, 1994). Dans le cas d'une stimulation électrique, ces filtrages spéciaux ne peuvent pas être utilisés car les artefacts dus à la stimulation électrique viennent détériorer le tracé. Comme le montre la figure 93, certaines fois, il n'est pas nécessaire d'utiliser un post-traitement des tracés. Cela n'est malheureusement pas toujours le cas. Afin d'utiliser les PEAEP pour la clinique et particulièrement pour le réglage de l'implant cochléaire, la qualité des tracés doit être suffisante et stable pour que l'on puisse en extraire les latences et amplitudes des ondes, même celles très précoces.

Figure 93 : Exemple de PEAEP sans post-traitement

Pour cela, nous avons développé un traitement des courbes adapté aux contraintes de la stimulation électrique lors du recueil des PEAEP.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"L'imagination est plus importante que le savoir"   Albert Einstein