WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Cherté de la vie et réalité économique au Niger

( Télécharger le fichier original )
par Kabir BOUBACAR ISSA BABA
Institut de Stratégie dà¢â‚¬â„¢Evaluation et de la Prospective - Master 2 2011
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

CHAPITRE III : Analyse Empirique

On s'inspirera des travaux du centre d'analyse des politiques économiques et sociales (2002) examinant les sources de l'inflation au Burkina Faso. Ils confirment l'hypothèse d'une relation entre l'inflation et ces agrégats macroéconomiques. Toutefois, des modifications ont été apportées au modèle et les données pour tenir comptes de la spécificité du cas du Niger.

3.1 Modèle et résultats économétriques

3.1.1 Spécification du modèle

v Le modèle de Base

IPC= f (DC, IPM, PIBH, TE, M1)

IPC = indice harmonisé des prix à la consommation

DC = disponibilité céréalière

IPM = indice des prix à l'importation

TE = taux de change à l'incertain

PIBH = Produit Intérieur Brut réel par habitant

M1 = masse monétaire au sens strict

Log(IPC)= á0+ á1 Log(DC) + á2 Log(IPM) + á3 Log(PIBH) + á4 Log(M1) + a5 Log(TE) + åt

De ce qui précède, on retient une forme fonctionnelle définie comme:

åt est le terme d'erreur.

Les signes attendus des paramètres sont : a1 < 0, a2 > 0, a3 > 0, a4 > 0 et a5 > 0

3.1. 2 Test d'hypothèses statistiques

v Test de stationnarité des variables

Une série temporelle est stationnaire si elle est à la réalisation d'un processus stationnaire. Un processus Xt est dit stationnaire si tous ses moments sont invariants pour tout changement d'origine du temps. En d'autres termes, Xt est stationnaire si:

§ E(Xt)= moyenne théorique est indépendante de temps,

§ Var (Xt) = variance théorique est indépendante de temps,

§ E {(E(Xt) (Xt+h - E (Xt+h)} = auto covariance dépend de h et non de t; (Avec h = horizon temporel).

Plus littérairement, la stationnarisation permet de s'assurer que le processus de génération des données s'inscrit dans une bande autour d'une valeur moyenne et qu'il tend à revenir à la moyenne et les fluctuations autour de cette valeur moyenne (mesurée par la variance) auront en général une amplitude constante.

Il existe deux types de processus non stationnaire: les processus TS (Trend Stationary Processes stationnaire en tendance) qui présentent une non-stationnarité de type déterministe et les processus DS (Difference Stationary Processes = stationnaire en différence) pour lesquels la stationnarité est de type aléatoire. Ces processus sont respectivement stationnarisés par écart à la tendance et par un filtre aux différences. Dans le dernier cas, le nombre de filtre aux différences permet de déterminer l'ordre d'intégration.

Parmi les différents tests de stationnarité celui de Dickey - Fuller Augmenté a été choisi. La procédure du test est la suivante:

H0 : présence de racine unitaire (le processus est non stationnaire)

H1 : absence de racine unitaire (le processus est stationnaire)

La règle de décision est la suivante: au seuil de 5%, si la valeur ADF est inférieure à la valeur critique (CV), alors on accepte l'hypothèse de stationnarité de la variable. Dans le cas échéant, on accepte l'hypothèse de non stationnarité. Il suffit seulement de comparer la valeur de la probabilité. Si elle est inférieure à 5%, alors la série est stationnaire; dans le cas contraire, la série est non stationnaire.

Le test de stationnarité sur les variables en différence première donne les résultats suivants:

Tableau 3 : Test de stationnarité sur les variables

Variables

ADF

CV

Trend

Constante

Niveau d'intégration

LIPC

-4.33

-1.95

A

A

1

LDC

-7.44

-1.95

A

A

1

LIPM

-6.4

-3.57

P

A

1

LPIBH

-5.15

-1.95

A

A

1

LM1

-3.67

-1.95

A

A

1

LTE

-4.54

-1.95

A

A

1

Source : Nos calculs sur Eviews sur les données de la BM

A = absence, P = présence, CV = Valeur Critique, ADF= Augmented Dickey Fuller.

Le tableau ci-dessus montre que, seul la variable IPM a un trend significatif. Ceci signifie que cette série est un processus " Trend Stationary"; et que l'effet de tout choc sur cette dernière est transitoire (la série a une mémoire finie des chocs).

Cependant, il ressort de ces résultats que toutes les séries considérées ne sont pas stationnaires à niveau au seuil de 5% mais le sont en différence première. On peut alors se poser la question sur l'existence ou non d'une relation de cointégration entre les variables d'où le test de cointégration. Une condition nécessaire est que les variables soient intégrées de même ordre.

v Test de cointégration

L'objectif de ce test est de chercher l'existence d'une relation d'équilibre à long terme entre les variables même si à court terme elles présentent des évolutions divergentes. Des séries temporelles non stationnaires à niveau sont cointegrées s'il existe une combinaison linéaire de celle-ci qui est stationnaire. Cette combinaison linéaire est appelée coeintégrante. Une façon de tester la présence d'une relation d'équilibre entre les variables est la procédure statistique de Johansen (1988,1991).

Comme définition du concept de cointégration, Engle et Granger (1987) fournissent formellement ce qui suit: supposons un vecteur Xt de variables. Les composantes de Xt sont dites cointégrées si:

- Elles sont affectées du même ordre d'intégration « d »;

- Il existe une combinaison linéaire de ces variables d'ordre d'intégration inférieur, c'est-à-dire  s'il existe un vecteur â non nul tel que Zt = â.Xt est I(d-b) avec 0 = b = d.

Le vecteur â est un vecteur cointégrant. En particulier, pour d = 1, la cointégration implique que â est stationnaire I(0).

La procedure utilisée dans ce travail est celle de Johansen (1988). La première étape fondamentale dans cette procedure est le choix du nombre de retards optimal.

Il ressort clairement que l'hypothèse nulle qui affirme qu'il n'existe aucune relation de cointégration entre les six variables est rejetée au seuil de 5% par la statistique de la valeur propre maximale. En revanche, l'hypothèse d'au plus un vecteur de cointégration ne peut être rejetée car la statistique de test rapporte une valeur inférieure à la valeur critique. La statistique de test nous conduit donc à retenir une relation de cointégration entre les variables (voir annexe 7).

En somme, nous avons démontré que les variables retenues pour l'estimation du modèle sont intégrées de même ordre [elles sont I(1)] et cointegrées. Dans ce cas l'estimation au modèle VAR sur variable en modèle vectoriel à correction d'erreur (MVCE) est préférable à un modèle à correction d'erreur compte tenu du niveau des données disponibles.

v Détermination du nombre de retard optimal

Le choix du retard optimal p est très important dans la spécification du VAR. En effet, le fait d'inclure un nombre élevé de retards supprime l'autocorrélation des erreurs, mais réduit le nombre de degrés de liberté et la puissance du test. Oublier des retards affaiblit également la puissance du test. Il existe plusieurs façons de fixer une valeur raisonnable de p. Dans cette étude, on utilise le test du rapport de vraisemblance et les critères d'information (Akaike, Schwarz, Hannan-Quinn...) pour déterminer le nombre de retards optimal afin de s'assurer de l'adéquation du nombre de retards retenu, le tableau ci-dessous édifie sur le choix optimal du retard. En observant ce tableau, on constate que ce n'est pas tous les critères (AKAIKE, HANNAN, FPE, SCHWARZ, SC ? HQ, LR2) qui conduisent à un retard optimal p = 1. On est donc en présence d'une contradiction de la part de ces critères d'information, ce qui n'est pas souvent le cas dans la pratique. Comme les séries des variables sont intégrées d'ordre 1, nous prenons 1 comme étant le nombre de retard qui correspond au retard maximal selon la majorité des critères.

Tableau 4 : Retard optimal

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Lag

LogL

LR2(*)

FPE3(*)

AIC4(*)

SC5(*)

HQ6(*)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

 44.70426

NA 

 4.04e-08

-2.836018

-2.598125

-2.763292

1

 146.8250

  160.4755*

  1.69e-10*

-8.344646

 -6.917284*

 -7.908287*

2

 173.5540

 32.45661

 1.81e-10

-8.468143

-5.851313

-7.668152

3

 202.3380

 24.67201

 2.41e-10

 -8.738430*

-4.932131

-7.574806

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source : Nos calculs sur Eviews sur les données de la BM

* 2 sequential modified LR test statistic (each test at 5% level)

* 3 FPE: Final Prediction Error

* 4 AIC: Akaike Information Criterion

* 5 SC: Schwarz Information Criterion

* 6 HQ: Hannan-Quinn information criterion

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Aux âmes bien nées, la valeur n'attend point le nombre des années"   Corneille