[1] Allen E (2007). Modeling with Itô Stochastic
Differential Equations. Springer-Verlag, New York. ISBN 13 :
978-1-4020-5953-7.
[2] Boukhetala K (1994). Simulation Study of a Dispersion
About an Attractive Center. In proceeding of 11th Symposium Computational
Statistics., pp. 128-130, Edited by R. Dutter and W. Grossman, Wien,
Austria.
[3] Boukhetala K (1995). Identification and simulation of a
communication system. Maghreb Mathematical Review, 2,
pp. 55-79.
[4] Boukhetala K (1996). Computer Methods and Water
Resources, Modelling and Simulation of a Dispersion Pollutant with Attractive
Centre, volume 3, pp. 245-252, Computational mechanics publications
edition. Boston, USA.
[5] Boukhetala K (1998). Application des Processus de
Diffusion, Echantillonnage Optimal. Ph.D. thesis, University of Science
and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria.
[6] Boukhetala K (1998). Estimation of the first passage time
distribution for a simulated diffusion process. Maghreb Mathematical
Review, 7, pp. 1-25.
[7] Boukhetala K (1998). Kernel density of the exit time in a
simulated diffusion. The Annals of The Engineer Maghrebian,
12, pp. 587-589.
[8] Boukhetala K, Guidoum A (2011). Sim.DiffProc : A Package
for Simulation of Diffusion Processes in R. Le Hal revue du centre national
de la recherche scientifique (France). Preprint submitted to Journal
of Statistical Software (JSS), 25 May 2011.
http://hal.
archives-ouvertes.fr/hal-00629841/fr/.
[9] Boukhetala K, Guidoum A (2011). Sim.DiffProc :
Simulation of Diffusion Processes. R package version 2.0.
http://CRAN.R-project.org/package=Sim.DiffProc.
[10] Boukhetala K, Guidoum A (2011). Sim.DiffProcGUI :
Graphical User Interface for Simulation of Diffusion Processes. R package
version 2.0. http://CRAN.R-project.org/
package=Sim.DiffProcGUI.
[11] Brown R (1828). A brief account of microscopical
observations made in the months of June, July and August, 1827, on the
particles contained in the pollen of plants; and on the general existence of
active molecules in organic and inorganic bodies. Philosophical
Magazine, 4,
[12] Brian J F (1992). Brownian movement in Clarkia pollen: a
reprise of the first observations. The Microscope,
40(4), pp. 235-241.
[13] Dalgaard P (2001). A Primer on the R-Tcl/Tk Package. R
News, 1(3), pp. 27-31.
[14] Dalgaard P (2002). Changes to the R-Tcl/Tk Package. R
News, 2(3), pp. 25-71.
[15] Deheuvels P (2006). Karhunen-Loève expansions of
mean-centered Wiener processes. High Dimensional Probability,
51, pp. 62-76.
[16] Deheuvels P, G. Peccati G, Yor M (2006). On quadratic
functionals of the brownian sheet and related processes. Stochastic
Processes and their Applications, 116, pp. 493-538.
[17] Doob J L (1942). What is a stochastic process?. The
American Mathematical Monthly, 49, pp. 648-653.
[18] Douglas H, Peter P (2006). Stochastic Differential
Equations in Science and Engineering. World Scientific Publishing. ISBN
981-256-296-6.
[19] Flandrin P, Borgant P, Amblard P O (2003). From
Stationarity to Self-similarity, and Back: Variations on the Lamperti
Transformation. in Processes with Long-Range Correlations, pp. 88-117.
Springer-Verlag
[20] Forman J L, Sørensen M (2007). The Pearson
Diffusions : A Class of Statistically Tractable Diffusion Processes. SSRN :
Social Science Research Network, http://ssrn.com/
abstract=1150110.
[21] Franck J (2009). Modèles aléatoires et
physique probabiliste. Springer-Verlag, New York. ISBN 13 :
978-2-287-99307-7.
[22] Greiner A, Strittmatter W, Honerkamp J (1988). Numerical
Integration of Stochastic Differential Equations. The Journal of
Statistical Physics, 51(1/2).
[23] Hadeler K, de Mottoni P, Schumacher K (1980). Dynamic
Models for Animal Orientation. The Journal of Mathematical Biology,
10, pp. 307-332.
[24] Heemink A (1990). Stochastic Modelling of Dispersion in
Shallow Water. Stochastic Hydrology and Hydraulics,
4, pp. 161-174.
[25] Heinz S (2011). Mathematical Modeling. Stochastic
Evolution, pp. 295-334, SpringerVerlag, Berlin Heidelberg. ISBN
978-3-642-20310-7.
[26] Helland S (1983). Diffusion models for the dispersal of
insects near an attractive center. The Journal of Mathematical
Biology, 18, pp. 103-122.
[27] Itô K (1944). Stochastic integral. Tokyo, Proc.
Jap. Acad, 20, pp. 519-529.
[28] Kolmogorov A N (1936). Math. Sbornik. N.S.,
1, pp. 607-610.
[29] Kloeden P, Platen E (1989). A Survey of Numerical Methods
for Stochastic Differential Equations. Stochastic Hydrology and
Hydraulics, 3, pp. 155-178.
[30] Lamperti J (1962). Semi-stable stochastic processes.
Transactions of the American Mathematical Society,
104, pp. 62-78.
http://www.jstor.org/stable/1993933.
[31] Peter E, Eckhard P (1995). Numerical Solution of
Stochastic Differential Equations. Springer-Verlag, New York. ISBN
0-387-54062-8.
[32] R Development Core Team (2011). R : A Language and
Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0,
http://www.R-project.org/.
[33] R Development Core Team (2011). Writing R
extensions. version 2.13.1 (2011-07-08), ISBN 3-900051-11-9.
[34] Racicot F É, Théoret R (2006). Finance
Computationnelle et Gestion des Risques. Presses de l'Université du
Québec. ISBN 2-7605-1447-1.
[35] Risken H (2001). The Fokker-Planck Equation : Methods
of Solutions and Applications. 2nd edition, Springer Series in
Synergetics. ISBN 9783540615309.
[36] Rolski T, Schmidli H, Schmidt V, Teugels J (1998).
Stochastic Processes for Insurance and Finance. John Wiley &
Sons.
[37] Saito Y, Mitsui T (1993). Simulation of Stochastic
Differential Equations. The Annals of the Institute of Statistical
Mathematics, 3, pp. 419-432.
[38] Silverman B W (1986). Density estimation for statistics
and data analysis. Chapman and Hall, London.
[39] Soong T T (1973). Random differential equations in
science and engineering. Academic Press, New York. LC NUMBER : QA274.23
.S58.
[40] Stefano M (2008). Simulation and Inference for
Stochastic Differential Equations. Springer-Verlag, New York. ISBN
978-0-387-75838-1.
[41] Welch B (2000). Practical Programming in Tcl and
Tk. 3nd edition. Prentice Hall PTR Upper Saddle River, NJ, USA. ISBN
0-13-022028-0.