WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Conception d'un pro logiciel interactif sous r pour la simulation de processus de diffusion

( Télécharger le fichier original )
par Arsalane Chouaib GUIDOUM
Université des sciences et de technologie de Houari Boumedienne - Magister en mathématiques 2012
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] Allen E (2007). Modeling with Itô Stochastic Differential Equations. Springer-Verlag, New York. ISBN 13 : 978-1-4020-5953-7.

[2] Boukhetala K (1994). Simulation Study of a Dispersion About an Attractive Center. In proceeding of 11th Symposium Computational Statistics., pp. 128-130, Edited by R. Dutter and W. Grossman, Wien, Austria.

[3] Boukhetala K (1995). Identification and simulation of a communication system. Maghreb Mathematical Review, 2, pp. 55-79.

[4] Boukhetala K (1996). Computer Methods and Water Resources, Modelling and Simulation of a Dispersion Pollutant with Attractive Centre, volume 3, pp. 245-252, Computational mechanics publications edition. Boston, USA.

[5] Boukhetala K (1998). Application des Processus de Diffusion, Echantillonnage Optimal. Ph.D. thesis, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria.

[6] Boukhetala K (1998). Estimation of the first passage time distribution for a simulated diffusion process. Maghreb Mathematical Review, 7, pp. 1-25.

[7] Boukhetala K (1998). Kernel density of the exit time in a simulated diffusion. The Annals of The Engineer Maghrebian, 12, pp. 587-589.

[8] Boukhetala K, Guidoum A (2011). Sim.DiffProc : A Package for Simulation of Diffusion Processes in R. Le Hal revue du centre national de la recherche scientifique (France). Preprint submitted to Journal of Statistical Software (JSS), 25 May 2011. http://hal.

archives-ouvertes.fr/hal-00629841/fr/.

[9] Boukhetala K, Guidoum A (2011). Sim.DiffProc : Simulation of Diffusion Processes. R package version 2.0. http://CRAN.R-project.org/package=Sim.DiffProc.

[10] Boukhetala K, Guidoum A (2011). Sim.DiffProcGUI : Graphical User Interface for Simulation of Diffusion Processes. R package version 2.0. http://CRAN.R-project.org/

package=Sim.DiffProcGUI.

[11] Brown R (1828). A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine, 4,

pp. 161-173. http://sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf.

[12] Brian J F (1992). Brownian movement in Clarkia pollen: a reprise of the first observations. The Microscope, 40(4), pp. 235-241.

[13] Dalgaard P (2001). A Primer on the R-Tcl/Tk Package. R News, 1(3), pp. 27-31.

[14] Dalgaard P (2002). Changes to the R-Tcl/Tk Package. R News, 2(3), pp. 25-71.

[15] Deheuvels P (2006). Karhunen-Loève expansions of mean-centered Wiener processes. High Dimensional Probability, 51, pp. 62-76.

[16] Deheuvels P, G. Peccati G, Yor M (2006). On quadratic functionals of the brownian sheet and related processes. Stochastic Processes and their Applications, 116, pp. 493-538.

[17] Doob J L (1942). What is a stochastic process?. The American Mathematical Monthly, 49, pp. 648-653.

[18] Douglas H, Peter P (2006). Stochastic Differential Equations in Science and Engineering. World Scientific Publishing. ISBN 981-256-296-6.

[19] Flandrin P, Borgant P, Amblard P O (2003). From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation. in Processes with Long-Range Correlations, pp. 88-117. Springer-Verlag

[20] Forman J L, Sørensen M (2007). The Pearson Diffusions : A Class of Statistically Tractable Diffusion Processes. SSRN : Social Science Research Network, http://ssrn.com/

abstract=1150110.

[21] Franck J (2009). Modèles aléatoires et physique probabiliste. Springer-Verlag, New York. ISBN 13 : 978-2-287-99307-7.

[22] Greiner A, Strittmatter W, Honerkamp J (1988). Numerical Integration of Stochastic Differential Equations. The Journal of Statistical Physics, 51(1/2).

[23] Hadeler K, de Mottoni P, Schumacher K (1980). Dynamic Models for Animal Orientation. The Journal of Mathematical Biology, 10, pp. 307-332.

[24] Heemink A (1990). Stochastic Modelling of Dispersion in Shallow Water. Stochastic Hydrology and Hydraulics, 4, pp. 161-174.

[25] Heinz S (2011). Mathematical Modeling. Stochastic Evolution, pp. 295-334, SpringerVerlag, Berlin Heidelberg. ISBN 978-3-642-20310-7.

[26] Helland S (1983). Diffusion models for the dispersal of insects near an attractive center. The Journal of Mathematical Biology, 18, pp. 103-122.

[27] Itô K (1944). Stochastic integral. Tokyo, Proc. Jap. Acad, 20, pp. 519-529.

[28] Kolmogorov A N (1936). Math. Sbornik. N.S., 1, pp. 607-610.

[29] Kloeden P, Platen E (1989). A Survey of Numerical Methods for Stochastic Differential Equations. Stochastic Hydrology and Hydraulics, 3, pp. 155-178.

[30] Lamperti J (1962). Semi-stable stochastic processes. Transactions of the American Mathematical Society, 104, pp. 62-78. http://www.jstor.org/stable/1993933.

[31] Peter E, Eckhard P (1995). Numerical Solution of Stochastic Differential Equations. Springer-Verlag, New York. ISBN 0-387-54062-8.

[32] R Development Core Team (2011). R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,

http://www.R-project.org/.

[33] R Development Core Team (2011). Writing R extensions. version 2.13.1 (2011-07-08), ISBN 3-900051-11-9.

[34] Racicot F É, Théoret R (2006). Finance Computationnelle et Gestion des Risques. Presses de l'Université du Québec. ISBN 2-7605-1447-1.

[35] Risken H (2001). The Fokker-Planck Equation : Methods of Solutions and Applications. 2nd edition, Springer Series in Synergetics. ISBN 9783540615309.

[36] Rolski T, Schmidli H, Schmidt V, Teugels J (1998). Stochastic Processes for Insurance and Finance. John Wiley & Sons.

[37] Saito Y, Mitsui T (1993). Simulation of Stochastic Differential Equations. The Annals of the Institute of Statistical Mathematics, 3, pp. 419-432.

[38] Silverman B W (1986). Density estimation for statistics and data analysis. Chapman and Hall, London.

[39] Soong T T (1973). Random differential equations in science and engineering. Academic Press, New York. LC NUMBER : QA274.23 .S58.

[40] Stefano M (2008). Simulation and Inference for Stochastic Differential Equations. Springer-Verlag, New York. ISBN 978-0-387-75838-1.

[41] Welch B (2000). Practical Programming in Tcl and Tk. 3nd edition. Prentice Hall PTR Upper Saddle River, NJ, USA. ISBN 0-13-022028-0.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Tu supportes des injustices; Consoles-toi, le vrai malheur est d'en faire"   Démocrite