Références bibliographiques
Références
bibliographiques
[1] D.P., Norton ; Y.W., Heo ; M.P., Ivill ; K., Ip ; S.J.,
Pearton ; M.F., Chisholm ; T., Steiner Mater. Today 7 (2004) 34.
[2] J. Joussot-Dubien, Nouveau Traité de Chimie
Minérale, Vol. 5, Masson & Cie, Paris (1962)
[3] A.F. Kohn, G. Ceder, D. Morgon, C.G. Van de Walle, Phys.
Rev.B, 61 (2000) 15019.
[4] B. J. Lokhand, M. D. Uplane, App. Surf. Sci. 167 (2000)
243-246.
[5] Van Heerden, P. Bhattacharya, R.S. Katiyar, Materials
Science and Engineering B103 (2003) 9-15.
[6] A. Bougrine, A. El Hichou, M. Addou, J. Ebothé, A.
Kachouna, M. Troyon, Material Chemistry and Physics 80 (2003) 438-445.
[7] I. Vurgaftman and J. R. Meyer. Band parameters for
nitrogen-containing semiconductors. J. Appl. Phys, 94 (2003) 3675
[8] S. L. Chuang and C. S. Chang. k.p method for strained
wurtzite semiconductors. Phys. Rev. B, 54 (1996) 2491
[9] W. R.L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall,
and B. K. Meyer. Valence- band ordering and magneto-optic exciton _ne structure
in ZnO. Phys. Rev. B, 65 (2002) 075207
[10] G. Bastard. Wave mechanics applied to semiconductor
heterostructures. Les editions de physique, (1992).
[11] D. G. Thomas. The exciton spectrum of zinc oxide. J. Phys.
Chem. Solids, 15 (1960) 86
[12] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G.
Cantwell, and W. C. Harsch. Valence-band ordering in ZnO. Phys. Rev. B, 60
(1999) 2340
[13] B. Gil, A. Lusson, V. Sallet, S. A. Said-Hassani, R.
Triboulet, and P. Bigenwald. Strain- feelds elects and reversal of the nature
of the fundamental valence band of ZnO epilayers. Jpn. J. Appl. Phys., 40
(2001) 1089.
[14] C. Klingshirn. ZnO : from basics towards applications.
Phys. Stat. Sol. (b), 244 (2007) 3027
[15] A. Ashra_ and C. Jagadish. Review of zincblende ZnO :
stability of metastable ZnO phase. J. Appl. Phys., 102 (2007) 071101
[16] I. Vurgaftman and J. R. Meyer. Band parameters for III-V
compound semiconductors and their alloys. J. Appl. Phys., 89 (2001) 5815
[17] http ://www.io_e.ru/SVA/NSM/Semicond/.
[18] Landolt-Börnstein. Numerical data and functional
relationship in science and technology, Vol. III/17a et Vol. III/17b. Springer,
Berlin (1982).
[19] C. F. Klingshirn. Semiconductor Optics, volume 45. Springer
(1997).
[20] A. Mosbah, << élaboration et caracterisation
de couches mince d'oxyde de zinc », Thèse doctorat de Univ.
Mentouri Constantine » (2009).
[21] Handbook of Chemistry and Physics, 56th Edition, Ed. R.C.
Weast, CRS Press, (1975)
[22] E.M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, Thin Solid
Films, 165 (1999) 348
[23] T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Cryst.
Res. Technol, 35 (2000) 193
[24] M. Rebien, W. Henrion, M. Bär, C.H. Fischer, App.
Phys. Lett, 80 (2002) 3518
[25] F. Ng-Cheng-Chin, M. Roslin, Z.H. Gu. T.Z. Fahidy, J. Phys.
D: Appl. Phys., 31 (1998) 71
[26] D. Vaufrey, << Optimisation de structures ITO /
semiconducteurs organiques », Thèse de doctorat de l'ecole centrale
de lyon» (2003).
[27] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Q. Li and
J. Xu, Nucl. Instrum. Methods. Phys. Res. B169 (2000) 59.
[28] Özgür Ü ; Y.I. Alivov ; C. Liu ; A. Teke ;
M.A. Reshchikov ; M.A. Dogan ; V. Avrutin ; S.J. Cho ; H. Morkoc J. Appl. Phys
98 (2005) 041301_1.
[29] J.P. Monsier ; S. Chakrabarti ; B. Doggett ; E. McGlynn ;
M.O. Henry ; A. Meaney Pro. SPIE. 2007, 6474, 64740I.
V. Srikant, D.R. Clarke, J. App. Phys., 83 (1998) 5447
[30] K.I. Chopra, S. Major and D.K. Pandya, Thin solid _lms 1
(1986) 102
[31] T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi,
Y. Hatanaka, p-Type ZnO Layer Formation by Excimer Laser Doping, physica status
solidi b, , 911 (2001) 229- 232
[32] A.F. Kohn, G. Ceder, D. Morgon, C. G. Van de Walle, Phys.
Rev.B, 61 (2000) 15019.
[33] K. Tominaga, T. Murayama, I. Mori, T. Ushiro, T. Moriga, I.
Nakabayashi, Thin Solid Films, 386 (2001) 267.
[35] T.L.Chu, S.S.Chu, Solid-State Electronics, 38 (1995)
533.
[36] De la torre Y Ramos J. Thèse de doctorat, Institut
national des sciences appliquées de Lyon, (2003).
[37] F-Josef Haug, Thesis of doctorat, Swiss Federal Institute
of technologie Zurich (2001).
[38] J. Nishino, Shigeo Ohshio, and Kiichiro Kamata, J. Am.
Ceram. Soc, 75 (1992). 3469-72.
[39] I. Wuled Lengooro, Yun Chan Kang, Takafumi Komiya, Kikuo
Okuyama and Noboru Tohge, Jpn. J. Appl. Phys.(1998) 288-290.
[40] C. Mazon, J. Muci, A. Sa-Neto, A. Ortiz-Conde and F.J.
Garcia, CH2953-8/91/10000-1156. IEEE (1991).
[41] E. Fortunato, N. Correia, and P. Barquinha, C. Costa, L.
Pereira, G. Gonçalves, R. Martins. Paper field effect transistor. in
Proc. SPIE, 7217 (2009) 72170K
[42] A. Zylbersztejn and N.F. Mott, Metal-insulator transition
in vanadium dioxide, Physical Review B, 11(1975) 4383-4395.
[43] Y. Paz, Z. Luo, L. Rabenberg, A. Heller, Photooxidative
self-cleaning transparent titanium dioxide films on glass, Journal of Materials
Research, 10(1995) 2842-2848.
[44] A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka,
Photocatalytic activity of boron-modified TiO2 under visible light: The effect
of boron content, calcination temperature and TiO2 matrix, Applied Catalysis B:
Environmental, 89(2009) 469-475.
[45] B. Liu, X. Wang, G. Cai, L. Wen, Y. Song and X. Zhao, Low
temperature fabrication of V- doped TiO2 nanoparticles, structure and
photocatalytic studies, Journal of Hazardous Materials, 169(1-3) (2009)
1112-1118.
[46] T. Minami, New n-type transparent conducting oxides, MRS
Bulletin 25/8 (2000) 38.
[47] M.A. Marquardt, N.A. Ashmore, and D.P. Cann, Crystal
chemistry and electrical properties of the delafossite structure, Thin Solid
Films, 496(1) (2006) 146-156.
[48] D.S. Ghosh, et al., Widely transparent electrodes based on
ultrathin metals, Optics Letters, 34(3) ( 2009) 325-327.
[49] S.-I. Na, S.S. Kim, J. Jang, D.-Y. Kim, Efficient and
flexible ITO-free organic solar cells using highly conductive polymer anodes,
Advanced Materials, 20(21) (2008) 4061-4067.
[50] S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E.
Elangovan, R. Martins, E. Fortunato, and R. Ganesan, High near-infrared
transparent molybdenum-doped indium oxide thin films for nanocrystalline
silicon solar cell applications, Solar Energy Materials and Solar
Cells, 93(1) (2009) 92-97.
[51] M.F.A.M. Van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley,
and M.P. Taylor, Titanium- doped indium oxide: A high-mobility transparent
conductor, Applied Physics Letters, 87(3) (2005) 1-3.
[52] R. Bel Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, Tin
doped indium oxide thin films: Electrical properties, Journal of Applied
Physics, 83(5) (1998) 2631-2645.
[53] K.H. Kim, K.C. Park, and D.Y. Ma, Structural, electrical
and optical properties of aluminum doped zinc oxide films prepared by radio
frequency magnetron sputtering, Journal of Applied Physics, 81(12) (1997)
7764-7772.
[54] V. Assunçao, E. Fortunato, A. Marques, H. A. Guas,
I. Ferreira, M.E.V. Costa, and R. Martins, Influence of the deposition pressure
on the properties of transparent and conductive ZnO:Ga thin-film produced by
r.f. sputtering at room temperature, Thin Solid Films, 427(1-2) (2003)
401-405.
[55] P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P.
Vilarinho, and R. Martins, Effect of different dopant elements on the
properties of ZnO thin films, Vacuum, 64(2002) 281- 285.
[56] C. Terrier, J.P. Chatelon, and J.A. Roger, Electrical and
optical properties of Sb:SnO2 thin films obtained by the sol-gel method, Thin
Solid Films, 295(1-2) (1997) 95-100.
[57] Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly,
Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable
doping levels and high electrical conductivity, ACS Nano, 3(6), (2009)
1373-1378.
[58] G. Korotcenkov, S.D. Hana,, (Cu, Fe, Co, or Ni)-doped
tin dioxide films deposited by spray pyrolysis : Doping influence on thermal
stability of the film structure, Materials Chemistry and Physics, 113
(2009)756-763.
[59] M. Jiang, X. Liu, Structural, electrical and optical
properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron
sputtering, Applied Surface Science, 255 (2008) 3175-3178.
[60] A.E. Rakhshani, Y. Makdisi, and H.A. Ramazaniyan,
Electronic and optical properties of fluorine-doped tin oxide films, Journal of
Applied Physics, 83(2) (1998)1049-1057.
[61] B.N. Pawar, S.R. Jadkar, and M.G. Takwale, Deposition
and characterization of transparent and conductive sprayed ZnO:B thin films,
Journal of Physics and Chemistry of Solids, 66(10) (2005)1779-1782.
[62] A. Ortiz, C. Falcony, J.A. Hernandez, M. Garcia, and J.C.
Alonso, Photoluminescent characteristics of lithium-doped zinc oxide films
deposited by spray pyrolysis, Thin Solid Films, 293(1-2) (1997)103-107.
[63] S.B. Zhang, S.-H. Wei, and A. Zunger, Intrinsic n-type
versus p-type doping asymmetry and the defect physics of ZnO, Physical Review B
- Condensed Matter and Materials Physics, 63(7) (2001)0752051-0752057.
[64] T.M. Barnes, K. Olson, and C.A. Wolden, On the formation
and stability of p-type conductivity in nitrogen-doped zinc oxide, Applied
Physics Letters, 86(11) (2005)1-3.
[65] J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, L.P. Zhu,
p-type conduction in N-Al co-doped ZnO thin films, Appl. Phys. Lett, 85(15)
(2004)31-34.
[66] J. Ni, X. Zhao, X. Zheng, J. Zhao, and B. Liu,
Electrical, structural, photoluminescence and optical properties of p-type
conducting, antimony-doped SnO2 thin films, Acta Materialia, 57(1)
(2009)278-285.
[67] R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja,
A. Yokochi, A. Draeseke, J. Tate, and A.W. Sleight, p-Type conductivity in the
delafossite structure, International Journal of Inorganic Materials, 3(3)
(2001)265-270.
[68] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H.
Hosono, P-type electrical conduction in transparent thin films of CuAlO2,
Nature, 389 (1997) 939-942.
[69] Ph. Lami et Y. Pauleau, J. Electrochem. Soc.: Solid-State
Science and Technology 135 (1988) 980.
[70] B. Grolleau, Le vide, les couches minces 204 (1980).
[71] T. Matsushima, thèse (Univ. d'Osaka, Japon, 1991) p.
49.
[72] McClanahan E.D., Laegreid N., «Sputtering by particle
bombardment III», Berlin: Springer Verlag, (1991). Chapter 7, Production
of thin films by controlled deposition of sputtered material, pp. 339.
[73] Maissel L., Glang R., «Handbook of thin film
technology». New York: McGraw-Hill, 1970.
[74] Bessot J.J., «Dépôts par
pulvérisation cathodique», Technique de l'Ingénieur, (1985),
Vol. M 7, Chap. 1657, pp. 1.
[75] T. Minami, S. Ida, T. Miyata, Y. Minamino, Thin Solid
Films, 445 (2003) 268.
[76] N. Nakamura, H. Nakagawa, K. Koshida, M. Niiya, Proceeding
of the 5th International Display workshops, (1998) 511.
[75] H. Koinuma, N. Kanda, J. Nishino, A. Ohtomo, H. Kuboto, M.
Kawasaki, M. Yoshimto. App. Surf. Sci, 514 (1997) 109-110.
[76] P. Fons, K. Iwata, A. Yamada, L. Matsubara, S. Niki, K.
Nakahara, T. Tanabe and H.
Takasu. App. Phys. Lett, 77 (2000) 1801.
[77] T. Miyata, S. Ida, T. Minami, J. Vac. Sci. Technol., A 21
(4) (2003) 1404
[78] J. Ma, F. Ji, D.H. Zhang, L.L. Ma, S.Y. Li, Thin Solid
Films, 357 (1999) 98.
[79] A.A. Dakhel, Mat. Chem. Phys, 81 (2003) 56.
[80] Douglas B.Chrisey and Graham K. Huubler, ½ Pulsed
Laser Deposition of Thin Film½ ed. Wiley interscience, New York (1994)
258.
[81] D. P. Norton, B. C. Chakoumakos, J. D. Budai, D. H.
Lowndes, B. C. Sales, J. R. Thompson, D. k. Christen, Science 265(5181) (1994)
2074-2077.
[82] P. Padhan, W. Prellier, and B. Mercey, Phys. Rev. B 70
(2004) 184419.
[83] X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu,
R.P.H. Chang, J. Cryst. Growth, 226 (2001) 123.
[84] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y.
Shi, Y. Zheng, J. Cryst. Growth, 243 (2002) 151.
[85] B.J. Lokhande, P.S. Patil, M.D. Uplane, Mater.Lett, 57
(2002) 573.
[86] R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado J.
Cryst, Growth, 247 (2003) 497.
[87] J. W. Elam, Z.A. Sechrist, S.M. George, Thin Solid Films,
43 (2002) 414.
[88] E.B. Yousfi, J. Fouache, D. Lincot, Appl. Surf. Sci., 153
(2000) 223.
[89] K. Saito, Y. Watanabe, K. Takahashi, T. Matsuzawa, B. Sang,
M. Konaga Solar Energy Materials and Solar Cells., 49 (1997) 187-193.
[90] J. Lu, Z. Ye, J. H. huang, L. Wang, B. Zhao, Appl. Surf.
Sci., 207 (2003)
[91] S.J. Baik, J.H. Jong, C.H. Lee, W.Y. Cho, & K.S. Lim,
Appl. Phys. Lett., 70 (1997) 3516.
[92] Y.C. Wang, I.C. Leu, M.H. Hon, J. Appl. Phys., 95 (2004)
1444.
[93] J.L. Vossen et W.Kern, Thin film processes Ed.Academic
press 1978; traite de la pulvérisation en général avec une
liste de références très complète jusqu'à
1977.
[94] D. Bouchier, thèse (Orsay, 1985) p. 122.
[95] Chen Bao-qing La technologie de pulvérisation
cathodique (en chinois) (Editions Scientifiques du Ministère de
l'Industrie de Chine, 1990)
[96] Ph. Lami et Y.Pauleau J.Electrochem.Soc. : Solid-statae
science and technology
[97] I. Wuled Lengooro, Yun Chan Kang, Takafumi Komiya, Kikuo
Okuyama and Noboru Tohge, Jpn. J. Appl. Phys.(1998) L 288-L 290.
[98] C. Mazon, J. Muci, A. Sa-Neto, A. Ortiz-Conde and F.J.
Garcia, CH2953-8/91/10000 1156. IEEE (1991).
[99] S. Zerkout, Thèse de doctorat, Université de
Constantine.
[100] J. Hirunlabh, S. Suthateeranet, K. Kirtikara and Ralph D.
Pynn, Thammasat Int. J. Sc.Tech, 3 (1998) 2
[101] S. Zerkout, << Etude des propriétés
des couches de TiNx et TiN-Fe élaborées par pulvérisation
magnétron réactive >>, Thèse de doctorat,
Université de Constantine (2004).
|
|