WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Télédétection du manteau neigeux et modélisation de la contribution des eaux de fonte des neiges aux débits des oueds du haut atlas de Marrakech

( Télécharger le fichier original )
par Abdelghani Boudhar
Université Cadi Ayyad - Doctorat National 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

I.1.4.2 Rehaussement et transformation

Le rehaussement est appliqué afin d'améliorer l'apparence d'une image pour faciliter son interprétation visuelle. Dans une image brute, les informations utiles sont souvent contenues dans un ensemble restreint de valeurs numériques parmi les valeurs possibles (256 dans le cas de données à 8 bits). Le rehaussement des contrastes se fait en changeant les valeurs initiales de façon à utiliser toutes les valeurs possibles, ce qui permet d'augmenter le contraste entre les cibles et leur environnement.

La transformation d'images est un procédé qui implique la manipulation de plusieurs bandes de données, que ce soit pour transformer une image provenant d'un capteur multispectral ou pour transformer plusieurs images de la même région prises à des moments différents (données multitemporelles). La transformation d'images génère une "nouvelle" image en combinant les différentes sources d'information de manière à rehausser certaines caractéristiques ou certaines propriétés des données qui sont moins évidentes dans l'image originale.

I.1.4.3 Classification et analyse

L'étape de classification a pour but d'assigner une classe particulière ou thème (par exemple : eau, forêt de conifères, maïs, blé, etc.) à chacun des pixels d'une image. Il existe deux types de classification : manuelle et automatique.

On peut classer les méthodes de classification en deux grandes catégories : les méthodes de classification supervisée et les méthodes de classification non supervisée. Une classification supervisée commence par l'identification des classes d'information qui sont ensuite utilisées pour définir les classes spectrales qui les représentent. Avec cette méthode de classification, l'analyste identifie des échantillons assez homogènes de l'image qui sont représentatifs de différents types de surfaces (classes d'information). Ces échantillons forment un ensemble de données-tests. La sélection de ces données-tests est basée sur les connaissances de l'analyste, sa familiarité avec les régions géographiques et les types de surfaces présents dans l'image. L'analyste supervise donc la classification d'un ensemble spécifique de classes. Les informations numériques pour chacune des bandes et pour chaque pixel de ces ensembles sont utilisées pour que l'ordinateur puisse définir les classes et ensuite reconnaître des régions aux propriétés similaires à chaque classe. Avec la méthode de classification non supervisée, les classes spectrales sont formées en premier, basées sur l'information numérique des données seulement. Ces classes sont ensuite associées, par un analyste, à des classes d'information utile (si possible). Des programmes appelés algorithmes de classification sont utilisés pour déterminer les groupes statistiques naturels ou les structures des données. Habituellement, l'analyste spécifie le nombre de groupes ou classes qui seront formés avec les données. De plus, l'analyste peut spécifier certains paramètres relatifs à la distance entre les classes et la variance à l'intérieur même d'une classe. Le résultat final de ce processus de classification itératif peut créer des classes que l'analyste voudra combiner, ou des classes qui devraient être séparées de nouveau. Chacune de ces étapes nécessite une nouvelle application de l'algorithme. L'intervention humaine n'est donc pas totalement exempte de la classification non supervisée. Cependant, cette méthode ne commence pas avec un ensemble prédéterminé de classes comme pour la classification supervisée.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Ceux qui rêvent de jour ont conscience de bien des choses qui échappent à ceux qui rêvent de nuit"   Edgar Allan Poe